ﻻ يوجد ملخص باللغة العربية
We numerically study quenches from a fully ordered state to the ferromagnetic regime of the chiral $mathbb{Z}_3$ clock model, where the physics can be understood in terms of sparse domain walls of six flavors. As in the previously studied models, the spread of entangled domain wall pairs generated by the quench lead to a linear growth of entropy with time, upto a time $ell/2v_g$ in size-$ell$ subsystems in the bulk where $v_g$ is the maximal group velocity of domain walls. In small subsystems located in the bulk, the entropy continues to further grow towards $ln 3$, as domain walls traverse the subsystem and increment the population of the two oppositely ordered states, restoring the $mathbb{Z}_3$ symmetry. The latter growth in entropy is seen also in small subsystems near an open boundary in a non-chiral clock model. In contrast to this, in the case of the chiral model, the entropy of small subsystems near an open boundary saturates. We rationalize the difference in behavior in terms of qualitatively different scattering properties of domain walls at the open boundary in the chiral model. We also present empirical results for entropy growth, correlation spread, and energies of longitudinal-field-induced bound states of domain wall pairs in the chiral model.
In this paper we study the driven critical dynamics in the three-state quantum chiral clock model. This is motivated by a recent experiment, which verified the Kibble-Zurek mechanism and the finite-time scaling in a reconfigurable one-dimensional arr
The Berezinskii-Kosterlitz-Thouless (BKT) transitions of the six-state clock model on the square lattice are investigated by means of the corner-transfer matrix renormalization group method. A classical analog of the entanglement entropy $S( L, T )$
Entropy plays a key role in statistical physics of complex systems, which in general exhibit diverse aspects of emergence on different scales. However, it still remains not fully resolved how entropy varies with the coarse-graining level and the desc
We consider quantum quenches in an integrable quantum chain with tuneable-integrability-breaking interactions. In the case where these interactions are weak, we demonstrate that at intermediate times after the quench local observables relax to a pret
We predict the emergence of turbulent scaling in the quench dynamics of the two-dimensional Heisenberg model for a wide range of initial conditions and model parameters. In the isotropic Heisenberg model, we find that the spin-spin correlation functi