ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrafast ab-initio Quantum Chemistry Using Matrix Product States

87   0   0.0 ( 0 )
 نشر من قبل Lars-Hendrik Frahm
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultrafast dynamics in chemical systems provide a unique access to fundamental processes at the molecular scale. A proper description of such systems is often very challenging because of the quantum nature of the problem. The concept of matrix product states (MPS), however, has proven its performance in describing such correlated quantum system in recent years for a wide range of applications. In this work, we continue the development of the MPS approach to study ultrafast electron dynamics in quantum chemical systems. The method combines time evolution schemes, such as fourth-order Runge-Kutta and Krylov space time evolution, with MPS, in order to solve the time-dependent Schrodinger equation efficiently. This allows for describing electron dynamics in molecules on a full configurational interaction (CI) level for a few femtoseconds after excitation. As a benchmark, we compare MPS based calculations to full CI calculations for a chain of hydrogen atoms and for the water molecule. Krylov space time evolution is in particular suited for the MPS approach, as it provides a wide range of opportunities to be adjusted to the reduced MPS dimension case. Finally, we apply the MPS approach to describe charge migration effects in iodoacetylene and find direct agreement between our results and experimental observations.

قيم البحث

اقرأ أيضاً

Fanpy is a free and open-source Python library for developing and testing multideterminant wavefunctions and related ab initio methods in electronic structure theory. The main use of Fanpy is to quickly prototype new methods by making it easier to tr ansfer the mathematical conception of a new wavefunction ans{a}tze to a working implementation. Fanpy uses the framework of our recently introduced Flexible Ansatz for N-electron Configuration Interaction (FANCI), where multideterminant wavefunctions are represented by their overlaps with Slater determinants of orthonormal spin-orbitals. In the simplest case, a new wavefunction ansatz can be implemented by simply writing a function for evaluating its overlap with an arbitrary Slater determinant. Fanpy is modular in both implementation and theory: the wavefunction model, the systems Hamiltonian, and the choice of objective function are all independent modules. This modular structure makes it easy for users to mix and match different methods and for developers to quickly try new ideas. Fanpy is written purely in Python with standard dependencies, making it accessible for most operating systems; it adheres to principles of modern software development, including comprehensive documentation, extensive testing, and continuous integration and delivery protocols. This article is considered to be the official release notes for the Fanpy library.
Ultra-short pulses propagating in nonlinear nanophotonic waveguides can simultaneously leverage both temporal and spatial field confinement, promising a route towards single-photon nonlinearities in an all-photonic platform. In this multimode quantum regime, however, faithful numerical simulations of pulse dynamics naively require a representation of the state in an exponentially large Hilbert space. Here, we employ a time-domain, matrix product state (MPS) representation to enable efficient simulations by exploiting the entanglement structure of the system. In order to extract physical insight from these simulations, we develop an algorithm to unravel the MPS quantum state into constituent temporal supermodes, enabling, e.g., access to the phase-space portraits of arbitrary pulse waveforms. As a demonstration, we perform exact numerical simulations of a Kerr soliton in the quantum regime. We observe the development of non-classical Wigner-function negativity in the solitonic mode as well as quantum corrections to the semiclassical dynamics of the pulse. A similar analysis of $chi^{(2)}$ simultons reveals a unique entanglement structure between the fundamental and second harmonic. Our approach is also readily compatible with quantum trajectory theory, allowing full quantum treatment of propagation loss and decoherence. We expect this work to establish the MPS technique as part of a unified engineering framework for the emerging field of broadband quantum photonics.
85 - Xiao Shi , Yun Shang , Chu Guo 2020
Matrix product state has become the algorithm of choice when studying one-dimensional interacting quantum many-body systems, which demonstrates to be able to explore the most relevant portion of the exponentially large quantum Hilbert space and find accurate solutions. Here we propose a quantum inspired K-means clustering algorithm which first maps the classical data into quantum states represented as matrix product states, and then minimize the loss function using the variational matrix product states method in the enlarged space. We demonstrate the performance of this algorithm by applying it to several commonly used machine learning datasets and show that this algorithm could reach higher prediction accuracies and that it is less likely to be trapped in local minima compared to the classical K-means algorithm.
Ab initio molecular dynamics (AIMD) is a valuable technique for studying molecules and materials at finite temperatures where the nuclei evolve on potential energy surfaces obtained from accurate electronic structure calculations. In this work, a qua ntum computer-based AIMD method is presented. The electronic energies are calculated on a quantum computer using the variational quantum eigensolver (VQE) method. We compute the energy gradients numerically using the Hellmann-Feynman theorem, finite differences, and a correlated sampling technique. Our method only requires additional classical calculations of electron integrals for each degree of freedom, without any additional computations on a quantum computer beyond the initial VQE run. To achieve comparable accuracy, our gradient calculation method requires three to five orders of magnitude fewer measurements than other brute force methods without correlated sampling. As a proof of concept, AIMD dynamics simulations are demonstrated for the H2 molecule on IBM quantum devices. To the best of our knowledge, it is the first successful attempt to run AIMD on quantum devices for a chemical system. In addition, we demonstrate the validity of the method for larger molecules using full configuration interaction (FCI) wave functions. As quantum hardware and noise mitigation techniques continue to improve, the method can be utilized for studying larger molecular and material systems.
We demonstrate that the optimal states in lossy quantum interferometry may be efficiently simulated using low rank matrix product states. We argue that this should be expected in all realistic quantum metrological protocols with uncorrelated noise an d is related to the elusive nature of the Heisenberg precision scaling in presence of decoherence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا