ترغب بنشر مسار تعليمي؟ اضغط هنا

Ab initio Study of Ground-State CS Photodissociation Via Highly Excited Electronic States

118   0   0.0 ( 0 )
 نشر من قبل Zhongxing Xu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Photodissociation by ultraviolet radiation is the key destruction pathway for CS in photon-dominated regions, such as diffuse clouds. However, the large uncertainties of photodissociation cross sections and rates of CS, resulting from a lack of both laboratory experiments and theoretical calculations, limit the accuracy of calculated abundances of S-bearing molecules by modern astrochemical models. Here we show a detailed textit{ab initio} study of CS photodissociation. Accurate potential energy curves of CS electronic states were obtained by choosing an active space CAS(8,10) in MRCI+Q/aug-cc-pV(5+d)Z calculation with additional diffuse functions, with a focus on the (B) and (C,^1Sigma^+) states. Cross sections for both direct photodissociation and predissociation from the vibronic ground state were calculated by applying the coupled-channel method. We found that the (C-X) ((0-0)) transition has extremely strong absorption due to a large transition dipole moment in the Franck-Condon region and the upper state is resonant with several triplet states via spin-orbit couplings, resulting in predissociation to the main atomic products C ((^3P)) and S ((^1D)). Our new calculations show the photodissociation rate under the standard interstellar radiation field is (2.9ee{-9}),s(^{-1}), with a 57% contribution from (C-X) ((0-0)) transition. This value is larger than that adopted by the Leiden photodissociation and photoionization database by a factor of 3.0. Our accurate textit{ab initio} calculations will allow more secure determination of S-bearing molecules in astrochemical models.

قيم البحث

اقرأ أيضاً

Accurate photodissociation cross sections have been computed for transitions from the X $^1Sigma^+$ ground electronic state of CS to six low-lying excited electronic states. New ab initio potential curves and transition dipole moment functions have b een obtained for these computations using the multi-reference configuration interaction approach with the Davidson correction (MRCI+Q) and aug-cc-pV6Z basis sets. State-resolved cross sections have been computed for transitions from nearly the full range of rovibrational levels of the X $^1Sigma^+$ state and for photon wavelengths ranging from 500 $text{AA}$ to threshold. Destruction of CS via predissociation in highly excited electronic states originating from the rovibrational ground state is found to be unimportant. Photodissociation cross sections are presented for temperatures in the range between 1000 and 10,000 K, where a Boltzmann distribution of initial rovibrational levels is assumed. Applications of the current computations to various astrophysical environments are briefly discussed focusing on photodissociation rates due to the standard interstellar and blackbody radiation fields.
Radium compounds have attracted recently considerable attention due to both development of experimental techniques for high-precision laser spectroscopy of molecules with short-lived nuclei and amenability of certain radium compounds for direct cooli ng with lasers. Currently, radium monofluoride (RaF) is one of the most studied molecules among the radium compounds, both theoretically and recently also experimentally. Complementary studies of further diatomic radium derivatives are highly desired to assess the influence of chemical substitution on diverse molecular parameters, especially on those connected with laser cooling, such as vibronic transition probabilities, and those related to violations of fundamental symmetries. In this article high-precision emph{ab initio} studies of electronic and vibronic levels of diatomic radium monochloride (RaCl) are presented. Recently developed approaches for treating electronic correlation with Fock-space coupled cluster methods are applied for this purpose. Theoretical results are compared to an early experimental investigation by Lagerqvist and used to partially reassign the experimentally observed transitions and molecular electronic levels of RaCl. Effective constants of $mathcal{P}$-odd hyperfine interaction $W_{rm{a}}$ and $mathcal{P,T}$-odd scalar-pseudoscalar nucleus-electron interaction $W_{rm{s}}$ in the ground electronic state of RaCl are estimated within the framework of a quasirelativistic Zeroth-Order Regular Approximation approach and compared to parameters in RaF and RaOH.
First-principles calculations using density functional theory based on norm-conserving pseudopotentials have been performed to investigate the Cs adsorption on the Si(001) surface for 0.5 and 1 ML coverages. We found that the saturation coverage corr esponds to 1 ML adsorption with two Cs atoms occupying the double layer model sites. While the 0.5 ML covered surface is of metallic nature, we found that 1 ML of Cs adsorption corresponds to saturation coverage and leads to a semiconducting surface. The results for the electronic behavior and surface work function suggest that adsorption of Cs takes place via polarized covalent bonding.
Elemental 2D materials exhibit intriguing heat transport and phononic properties. Here we have investigated the lattice thermal conductivity of newly proposed arsenene, the 2D honeycomb structure of arsenic, using {it ab initio} calculations. Solving the Boltzmann transport equation for phonons, we predict a highly anisotropic thermal conductivity, of $30.4$ and $7.8$ W/mK along the zigzag and armchair directions, respectively at room temperature. Our calculations reveal that phonons with mean free paths between $20$ nm and $1$ $mu$m provide the main contribution to the large thermal conductivity in the zig-zag direction, mean free paths of phonons contributing to heat transport in the armchair directions range between $20$ and $100$ nm. The obtained low and anisotropic thermal conductivity, and feasibility of synthesis, in addition to other reports on high electron mobility, make arsenene a promising material for a variety of applications, including thermal management and thermoelectric devices.
This work reports on the elastic and electronic properties of the newly discovered superconductor Th2NiC2 (A .Machado, et al., Supercond. Sci. Technol. 25 (2012) 045010) as obtained within ab initio calculations. We found that Th2NiC2 is mechanically stable and it will behave as a ductile material exhibiting enhanced elastic anisotropy in shear and a rather low hardness Our data reveal that for Th2NiC2 the Fermi level is located in a deep DOS minimum and the experimentally observed increase in TC in the sequence Th2NiC2 -> Th1.8Sc0.2NiC2 may be explained by the growth of N(EF). We also speculate that (i) an increase in the hole concentration will promote exchange splitting of Ni 3d bands, therefore the hole-doped Th2NiC2 should have a certain concentration border, where a phase transition from the superconducting to the magnetic state will be expected, and (ii) an increase in N(EF) (and, probably, in TC) for Th2NiC2-based materials may be also achieved by an alternative way: by electron doping - for example, by partial substitution of V for Th or Cu for Ni, as well as by partial substitution of N for C with the formation of Th-Ni carbonitrides like Th2NiC2-xNx.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا