ترغب بنشر مسار تعليمي؟ اضغط هنا

The upgrade of the ALICE TPC with GEMs and continuous readout

266   0   0.0 ( 0 )
 نشر من قبل Piotr Gasik Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The upgrade of the ALICE TPC will allow the experiment to cope with the high interaction rates foreseen for the forthcoming Run 3 and Run 4 at the CERN LHC. In this article, we describe the design of new readout chambers and front-end electronics, which are driven by the goals of the experiment. Gas Electron Multiplier (GEM) detectors arranged in stacks containing four GEMs each, and continuous readout electronics based on the SAMPA chip, an ALICE development, are replacing the previous elements. The construction of these new elements, together with their associated quality control procedures, is explained in detail. Finally, the readout chamber and front-end electronics cards replacement, together with the commissioning of the detector prior to installation in the experimental cavern, are presented. After a nine-year period of R&D, construction, and assembly, the upgrade of the TPC was completed in 2020.

قيم البحث

اقرأ أيضاً

A large Time Projection Chamber is the main device for tracking and charged-particle identification in the ALICE experiment at the CERN LHC. After the second long shutdown in 2019/20, the LHC will deliver Pb beams colliding at an interaction rate of about 50 kHz, which is about a factor of 50 above the present readout rate of the TPC. This will result in a significant improvement on the sensitivity to rare probes that are considered key observables to characterize the QCD matter created in such collisions. In order to make full use of this luminosity, the currently used gated Multi-Wire Proportional Chambers will be replaced. The upgrade relies on continuously operated readout detectors employing Gas Electron Multiplier technology to retain the performance in terms of particle identification via the measurement of the specific energy loss by ionization d$E$/d$x$. A full-size readout chamber prototype was assembled in 2014 featuring a stack of four GEM foils as an amplification stage. The performance of the prototype was evaluated in a test beam campaign at the CERN PS. The d$E$/d$x$ resolution complies with both the performance of the currently operated MWPC-based readout chambers and the challenging requirements of the ALICE TPC upgrade program. Detailed simulations of the readout system are able to reproduce the data.
The design, construction, and commissioning of the ALICE Time-Projection Chamber (TPC) is described. It is the main device for pattern recognition, tracking, and identification of charged particles in the ALICE experiment at the CERN LHC. The TPC is cylindrical in shape with a volume close to 90 m^3 and is operated in a 0.5 T solenoidal magnetic field parallel to its axis. In this paper we describe in detail the design considerations for this detector for operation in the extreme multiplicity environment of central Pb--Pb collisions at LHC energy. The implementation of the resulting requirements into hardware (field cage, read-out chambers, electronics), infrastructure (gas and cooling system, laser-calibration system), and software led to many technical innovations which are described along with a presentation of all the major components of the detector, as currently realized. We also report on the performance achieved after completion of the first round of stand-alone calibration runs and demonstrate results close to those specified in the TPC Technical Design Report.
52 - D. Andreou 2019
The Inner Tracking System (ITS) of the ALICE experiment will be upgraded during the second long LHC shutdown in $mathrm{2019}-mathrm{2020}$. The main goal of the ALICE ITS Upgrade is to enable high precision measurements of low - momentum particles ( < 1 GeV/c) by acquiring a large sample of events, benefiting from the increase of the LHC instantaneous luminosity of $mathrm{Pb}-mathrm{Pb}$ collisions to $mathcal{L} = 6 cdot 10^{27} cm^{-2} s^{-1} $ during Run 3. Working in this direction the ITS upgrade project is focusing on the increase of the readout rate, on the improvement of the impact parameter resolution, as well as on the improvement of the tracking efficiency and the position resolution. The major setup modification is the substitution of the current ITS with seven layers of silicon pixel detectors. The ALPIDE chip, a CMOS Monolithic Active Pixel Sensor (MAPS), was developed for this purpose and offers a spatial resolution of 5 $mu$m. The use of MAPS together with a stringent mechanical design allows for the reduction of the material budget down to 0.35% $X_0$ for the innermost layers and 1% $X_0$ for the outer layers. The detector design was validated during the research and development period through a variety of tests ensuring the proper operation for the full lifetime inside ALICE. The production phase is close to completion with all the new assembled components undergoing different tests that aim to characterize the modules and staves and determine their qualification level. This contribution describes the detector design, the measurements performed during the research and development phase, as well as the production status.
In this paper the PreAmplifier ShAper (PASA) for the Time Projection Chamber (TPC) of the ALICE experiment at LHC is presented. The ALICE TPC PASA is an ASIC that integrates 16 identical channels, each consisting of Charge Sensitive Amplifiers (CSA) followed by a Pole-Zero network, self-adaptive bias network, two second-order bridged-T filters, two non-inverting level shifters and a start-up circuit. The circuit is optimized for a detector capacitance of 18-25 pF. For an input capacitance of 25 pF, the PASA features a conversion gain of 12.74 mV/fC, a peaking time of 160 ns, a FWHM of 190 ns, a power consumption of 11.65 mW/ch and an equivalent noise charge of 244e + 17e/pF. The circuit recovers smoothly to the baseline in about 600 ns. An integral non-linearity of 0.19% with an output swing of about 2.1 V is also achieved. The total area of the chip is 18 mm$^2$ and is implemented in AMSs C35B3C1 0.35 micron CMOS technology. Detailed characterization test were performed on about 48000 PASA circuits before mounting them on the ALICE TPC front-end cards. After more than two years of operation of the ALICE TPC with p-p and Pb-Pb collisions, the PASA has demonstrated to fulfill all requirements.
The ALICE High-Level Trigger processes data online, to either select interesting (sub-) events, or to compress data efficiently by modeling techniques. Focusing on the main data source, the Time Projection Chamber, the architecure of the system and the current state of the tracking and compression methods are outlined.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا