ﻻ يوجد ملخص باللغة العربية
The Inner Tracking System (ITS) of the ALICE experiment will be upgraded during the second long LHC shutdown in $mathrm{2019}-mathrm{2020}$. The main goal of the ALICE ITS Upgrade is to enable high precision measurements of low - momentum particles (< 1 GeV/c) by acquiring a large sample of events, benefiting from the increase of the LHC instantaneous luminosity of $mathrm{Pb}-mathrm{Pb}$ collisions to $mathcal{L} = 6 cdot 10^{27} cm^{-2} s^{-1} $ during Run 3. Working in this direction the ITS upgrade project is focusing on the increase of the readout rate, on the improvement of the impact parameter resolution, as well as on the improvement of the tracking efficiency and the position resolution. The major setup modification is the substitution of the current ITS with seven layers of silicon pixel detectors. The ALPIDE chip, a CMOS Monolithic Active Pixel Sensor (MAPS), was developed for this purpose and offers a spatial resolution of 5 $mu$m. The use of MAPS together with a stringent mechanical design allows for the reduction of the material budget down to 0.35% $X_0$ for the innermost layers and 1% $X_0$ for the outer layers. The detector design was validated during the research and development period through a variety of tests ensuring the proper operation for the full lifetime inside ALICE. The production phase is close to completion with all the new assembled components undergoing different tests that aim to characterize the modules and staves and determine their qualification level. This contribution describes the detector design, the measurements performed during the research and development phase, as well as the production status.
The ALICE Collaboration aims at studying the physics of strongly interacting matter by building up a dedicated heavy-ion detector. The Inner Tracking System (ITS) is located in the heart of the ALICE Detector surrounding the interaction point. Now, A
The ATLAS detector at CERNs Large Hadron Collider (LHC) is equipped with a tracking system at its core (the Inner Detector, ID) consisting of silicon and gaseous straw tube detectors. The physics performance of the ID requires a precision alignment;
The LHCb experiment will operate at a luminosity of $2times10^{33}$ cm$^{-2}$s$^{-1}$ during LHC Run 3. At this rate the present readout and hardware Level-0 trigger become a limitation, especially for fully hadronic final states. In order to maintai
This paper describes general characteristics of the deployment and commissioned of the Detector Control System (DCS) AD0 for the second phase of the Large Hadron Collider (LHC). The AD0 detector is installed in the ALICE experiment to provide a better selection of diffractive events.
During the third long shutdown of the CERN Large Hadron Collider, the CMS Detector will undergo a major upgrade to prepare for Phase-2 of the CMS physics program, starting around 2026. The upgraded CMS detector will be read out at an unprecedented da