ترغب بنشر مسار تعليمي؟ اضغط هنا

The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events

136   0   0.0 ( 0 )
 نشر من قبل Peter Glassel
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The design, construction, and commissioning of the ALICE Time-Projection Chamber (TPC) is described. It is the main device for pattern recognition, tracking, and identification of charged particles in the ALICE experiment at the CERN LHC. The TPC is cylindrical in shape with a volume close to 90 m^3 and is operated in a 0.5 T solenoidal magnetic field parallel to its axis. In this paper we describe in detail the design considerations for this detector for operation in the extreme multiplicity environment of central Pb--Pb collisions at LHC energy. The implementation of the resulting requirements into hardware (field cage, read-out chambers, electronics), infrastructure (gas and cooling system, laser-calibration system), and software led to many technical innovations which are described along with a presentation of all the major components of the detector, as currently realized. We also report on the performance achieved after completion of the first round of stand-alone calibration runs and demonstrate results close to those specified in the TPC Technical Design Report.



قيم البحث

اقرأ أيضاً

265 - J. Adolfsson , M. Ahmed , S. Aiola 2020
The upgrade of the ALICE TPC will allow the experiment to cope with the high interaction rates foreseen for the forthcoming Run 3 and Run 4 at the CERN LHC. In this article, we describe the design of new readout chambers and front-end electronics, wh ich are driven by the goals of the experiment. Gas Electron Multiplier (GEM) detectors arranged in stacks containing four GEMs each, and continuous readout electronics based on the SAMPA chip, an ALICE development, are replacing the previous elements. The construction of these new elements, together with their associated quality control procedures, is explained in detail. Finally, the readout chamber and front-end electronics cards replacement, together with the commissioning of the detector prior to installation in the experimental cavern, are presented. After a nine-year period of R&D, construction, and assembly, the upgrade of the TPC was completed in 2020.
The ALICE High-Level Trigger processes data online, to either select interesting (sub-) events, or to compress data efficiently by modeling techniques. Focusing on the main data source, the Time Projection Chamber, the architecure of the system and the current state of the tracking and compression methods are outlined.
85 - Yumi Aoki 2020
A high momentum resolution is required for the precision measurement of Higgs boson at the International Linear Collider (ILC) using the recoil mass technique. The International Large Detector (ILD) is designed to meet this requirement by an MPGD-rea dout Time Projection Chamber (TPC) providing about 200 sample points each with a spatial resolution of 100 $mu$m operated in a magnetic field of 3.5 T. However, there is a potential problem that many positive ions generated in the gas amplification process in the end-plane detector modules would flow back into the drift volume of the TPC and distort its electric field. These positive ions must be removed by a gating device before reaching the drift volume. We have developed a GEM-like gating device (gating foil) to prevent ions from back-flowing to the drift volume and evaluated its performance. The performance measurement was carried out at DESY, using a 5 GeV electron beam and the Large Prototype TPC in a 1 T magnet field. We have measured the spatial resolution of our MPGD module equipped with the gating foil and the electron transmission rate of the gating device. This was the world first test beam experiment of a wireless TPC equipped with a high performance gating device. In this report, we present our results on the spatial resolution and the electron transmission rate.
In this paper the PreAmplifier ShAper (PASA) for the Time Projection Chamber (TPC) of the ALICE experiment at LHC is presented. The ALICE TPC PASA is an ASIC that integrates 16 identical channels, each consisting of Charge Sensitive Amplifiers (CSA) followed by a Pole-Zero network, self-adaptive bias network, two second-order bridged-T filters, two non-inverting level shifters and a start-up circuit. The circuit is optimized for a detector capacitance of 18-25 pF. For an input capacitance of 25 pF, the PASA features a conversion gain of 12.74 mV/fC, a peaking time of 160 ns, a FWHM of 190 ns, a power consumption of 11.65 mW/ch and an equivalent noise charge of 244e + 17e/pF. The circuit recovers smoothly to the baseline in about 600 ns. An integral non-linearity of 0.19% with an output swing of about 2.1 V is also achieved. The total area of the chip is 18 mm$^2$ and is implemented in AMSs C35B3C1 0.35 micron CMOS technology. Detailed characterization test were performed on about 48000 PASA circuits before mounting them on the ALICE TPC front-end cards. After more than two years of operation of the ALICE TPC with p-p and Pb-Pb collisions, the PASA has demonstrated to fulfill all requirements.
187 - S.Ban , K.D.Nakamura , S.Akiyama 2017
AXEL is a high pressure xenon gas TPC detector being developed for neutrinoless double-beta decay search. We use the proportional scintillation mode with a new electroluminescence light detection system to achieve high energy resolution in a large de tector. The detector also has tracking capabilities, which enable significant background rejection. To demonstrate our detection technique, we constructed a 10L prototype detector filled with up to 10bar xenon gas. The FWHM energy resolution obtained by the prototype detector is 4.0 $pm$ 0.30 $%$ at 122 keV, which corresponds to 0.9 ~ 2.0 % when extrapolated to the Q value of the $0 ubetabeta$ decay of $^{136}$Xe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا