ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterizing the Evasion Attackability of Multi-label Classifiers

108   0   0.0 ( 0 )
 نشر من قبل Zhuo Yang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Evasion attack in multi-label learning systems is an interesting, widely witnessed, yet rarely explored research topic. Characterizing the crucial factors determining the attackability of the multi-label adversarial threat is the key to interpret the origin of the adversarial vulnerability and to understand how to mitigate it. Our study is inspired by the theory of adversarial risk bound. We associate the attackability of a targeted multi-label classifier with the regularity of the classifier and the training data distribution. Beyond the theoretical attackability analysis, we further propose an efficient empirical attackability estimator via greedy label space exploration. It provides provably computational efficiency and approximation accuracy. Substantial experimental results on real-world datasets validate the unveiled attackability factors and the effectiveness of the proposed empirical attackability indicator



قيم البحث

اقرأ أيضاً

Classifiers are often used to detect miscreant activities. We study how an adversary can efficiently query a classifier to elicit information that allows the adversary to evade detection at near-minimal cost. We generalize results of Lowd and Meek (2 005) to convex-inducing classifiers. We present algorithms that construct undetected instances of near-minimal cost using only polynomially many queries in the dimension of the space and without reverse engineering the decision boundary.
Classifier evasion consists in finding for a given instance $x$ the nearest instance $x$ such that the classifier predictions of $x$ and $x$ are different. We present two novel algorithms for systematically computing evasions for tree ensembles such as boosted trees and random forests. Our first algorithm uses a Mixed Integer Linear Program solver and finds the optimal evading instance under an expressive set of constraints. Our second algorithm trades off optimality for speed by using symbolic prediction, a novel algorithm for fast finite differences on tree ensembles. On a digit recognition task, we demonstrate that both gradient boosted trees and random forests are extremely susceptible to evasions. Finally, we harden a boosted tree model without loss of predictive accuracy by augmenting the training set of each boosting round with evading instances, a technique we call adversarial boosting.
In Multiple Instance learning (MIL), weak labels are provided at the bag level with only presence/absence information known. However, there is a considerable gap in performance in comparison to a fully supervised model, limiting the practical applica bility of MIL approaches. Thus, this paper introduces a novel semi-weak label learning paradigm as a middle ground to mitigate the problem. We define semi-weak label data as data where we know the presence or absence of a given class and the exact count of each class as opposed to knowing the label proportions. We then propose a two-stage framework to address the problem of learning from semi-weak labels. It leverages the fact that counting information is non-negative and discrete. Experiments are conducted on generated samples from CIFAR-10. We compare our model with a fully-supervised setting baseline, a weakly-supervised setting baseline and learning from pro-portion (LLP) baseline. Our framework not only outperforms both baseline models for MIL-based weakly super-vised setting and learning from proportion setting, but also gives comparable results compared to the fully supervised model. Further, we conduct thorough ablation studies to analyze across datasets and variation with batch size, losses architectural changes, bag size and regularization
In this paper, we propose the MIML (Multi-Instance Multi-Label learning) framework where an example is described by multiple instances and associated with multiple class labels. Compared to traditional learning frameworks, the MIML framework is more convenient and natural for representing complicated objects which have multiple semantic meanings. To learn from MIML examples, we propose the MimlBoost and MimlSvm algorithms based on a simple degeneration strategy, and experiments show that solving problems involving complicated objects with multiple semantic meanings in the MIML framework can lead to good performance. Considering that the degeneration process may lose information, we propose the D-MimlSvm algorithm which tackles MIML problems directly in a regularization framework. Moreover, we show that even when we do not have access to the real objects and thus cannot capture more information from real objects by using the MIML representation, MIML is still useful. We propose the InsDif and SubCod algorithms. InsDif works by transforming single-instances into the MIML representation for learning, while SubCod works by transforming single-label examples into the MIML representation for learning. Experiments show that in some tasks they are able to achieve better performance than learning the single-instances or single-label examples directly.
Exabytes of data are generated daily by humans, leading to the growing need for new efforts in dealing with the grand challenges for multi-label learning brought by big data. For example, extreme multi-label classification is an active and rapidly gr owing research area that deals with classification tasks with an extremely large number of classes or labels; utilizing massive data with limited supervision to build a multi-label classification model becomes valuable for practical applications, etc. Besides these, there are tremendous efforts on how to harvest the strong learning capability of deep learning to better capture the label dependencies in multi-label learning, which is the key for deep learning to address real-world classification tasks. However, it is noted that there has been a lack of systemic studies that focus explicitly on analyzing the emerging trends and new challenges of multi-label learning in the era of big data. It is imperative to call for a comprehensive survey to fulfill this mission and delineate future research directions and new applications.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا