ﻻ يوجد ملخص باللغة العربية
Regularization has long been utilized to learn sparsity in deep neural network pruning. However, its role is mainly explored in the small penalty strength regime. In this work, we extend its application to a new scenario where the regularization grows large gradually to tackle two central problems of pruning: pruning schedule and weight importance scoring. (1) The former topic is newly brought up in this work, which we find critical to the pruning performance while receives little research attention. Specifically, we propose an L2 regularization variant with rising penalty factors and show it can bring significant accuracy gains compared with its one-shot counterpart, even when the same weights are removed. (2) The growing penalty scheme also brings us an approach to exploit the Hessian information for more accurate pruning without knowing their specific values, thus not bothered by the common Hessian approximation problems. Empirically, the proposed algorithms are easy to implement and scalable to large datasets and networks in both structured and unstructured pruning. Their effectiveness is demonstrated with modern deep neural networks on the CIFAR and ImageNet datasets, achieving competitive results compared to many state-of-the-art algorithms. Our code and trained models are publicly available at https://github.com/mingsuntse/regularization-pruning.
Network pruning is widely used to compress Deep Neural Networks (DNNs). The Soft Filter Pruning (SFP) method zeroizes the pruned filters during training while updating them in the next training epoch. Thus the trained information of the pruned filter
The advancement of convolutional neural networks (CNNs) on various vision applications has attracted lots of attention. Yet the majority of CNNs are unable to satisfy the strict requirement for real-world deployment. To overcome this, the recent popu
Parameter pruning is a promising approach for CNN compression and acceleration by eliminating redundant model parameters with tolerable performance loss. Despite its effectiveness, existing regularization-based parameter pruning methods usually drive
Network pruning in Convolutional Neural Networks (CNNs) has been extensively investigated in recent years. To determine the impact of pruning a group of filters on a networks accuracy, state-of-the-art pruning methods consistently assume filters of a
Parameter pruning is a promising approach for CNN compression and acceleration by eliminating redundant model parameters with tolerable performance degrade. Despite its effectiveness, existing regularization-based parameter pruning methods usually dr