ﻻ يوجد ملخص باللغة العربية
We explore training attention-based encoder-decoder ASR in low-resource settings. These models perform poorly when trained on small amounts of transcribed speech, in part because they depend on having sufficient target-side text to train the attention and decoder networks. In this paper we address this shortcoming by pretraining our network parameters using only text-based data and transcribed speech from other languages. We analyze the relative contributions of both sources of data. Across 3 test languages, our text-based approach resulted in a 20% average relative improvement over a text-based augmentation technique without pretraining. Using transcribed speech from nearby languages gives a further 20-30% relative reduction in character error rate.
This paper presents our recent effort on end-to-end speaker-attributed automatic speech recognition, which jointly performs speaker counting, speech recognition and speaker identification for monaural multi-talker audio. Firstly, we thoroughly update
Recently, an end-to-end speaker-attributed automatic speech recognition (E2E SA-ASR) model was proposed as a joint model of speaker counting, speech recognition and speaker identification for monaural overlapped speech. In the previous study, the mod
Recently, an end-to-end (E2E) speaker-attributed automatic speech recognition (SA-ASR) model was proposed as a joint model of speaker counting, speech recognition and speaker identification for monaural overlapped speech. It showed promising results
Multilingual ASR technology simplifies model training and deployment, but its accuracy is known to depend on the availability of language information at runtime. Since language identity is seldom known beforehand in real-world scenarios, it must be i
While deep learning based end-to-end automatic speech recognition (ASR) systems have greatly simplified modeling pipelines, they suffer from the data sparsity issue. In this work, we propose a self-training method with an end-to-end system for semi-s