ترغب بنشر مسار تعليمي؟ اضغط هنا

Examining the Global Spread of COVID-19 Misinformation

115   0   0.0 ( 0 )
 نشر من قبل Hany Farid
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

The global COVID-19 pandemic has led to the online proliferation of health-, political-, and conspiratorial-based misinformation. Understanding the reach and belief in this misinformation is vital to managing this crisis, as well as future crises. The results from our global survey finds a troubling reach of and belief in COVID-related misinformation, as well as a correlation with those that primarily consume news from social media, and, in the United States, a strong correlation with political leaning.



قيم البحث

اقرأ أيضاً

Coronavirus outbreak is one of the most challenging pandemics for the entire human population of the planet Earth. Techniques such as the isolation of infected persons and maintaining social distancing are the only preventive measures against the epi demic COVID-19. The actual estimation of the number of infected persons with limited data is an indeterminate problem faced by data scientists. There are a large number of techniques in the existing literature, including reproduction number, the case fatality rate, etc., for predicting the duration of an epidemic and infectious population. This paper presents a case study of different techniques for analysing, modeling, and representation of data associated with an epidemic such as COVID-19. We further propose an algorithm for estimating infection transmission states in a particular area. This work also presents an algorithm for estimating end-time of an epidemic from Susceptible Infectious and Recovered model. Finally, this paper presents empirical and data analysis to study the impact of transmission probability, rate of contact, infectious, and susceptible on the epidemic spread.
This research was done during the DOMath program at Duke University from May 18 to July 10, 2020. At the time, Duke and other universities across the country were wrestling with the question of how to safely welcome students back to campus in the Fal l. Because of this, our project focused on using mathematical models to evaluate strategies to suppress the spread of the virus on campus, specifically in dorms and in classrooms. For dorms, we show that giving students single rooms rather than double rooms can substantially reduce virus spread. For classrooms, we show that moving classes with size above some cutoff online can make the basic reproduction number $R_0<1$, preventing a wide spread epidemic. The cutoff will depend on the contagiousness of the disease in classrooms.
We develop an agent-based model on a network meant to capture features unique to COVID-19 spread through a small residential college. We find that a safe reopening requires strong policy from administrators combined with cautious behavior from studen ts. Strong policy includes weekly screening tests with quick turnaround and halving the campus population. Cautious behavior from students means wearing facemasks, socializing less, and showing up for COVID-19 testing. We also find that comprehensive testing and facemasks are the most effective single interventions, building closures can lead to infection spikes in other areas depending on student behavior, and faster return of test results significantly reduces total infections.
The ongoing Coronavirus (COVID-19) pandemic highlights the inter-connectedness of our present-day globalized world. With social distancing policies in place, virtual communication has become an important source of (mis)information. As increasing numb er of people rely on social media platforms for news, identifying misinformation and uncovering the nature of online discourse around COVID-19 has emerged as a critical task. To this end, we collected streaming data related to COVID-19 using the Twitter API, starting March 1, 2020. We identified unreliable and misleading contents based on fact-checking sources, and examined the narratives promoted in misinformation tweets, along with the distribution of engagements with these tweets. In addition, we provide examples of the spreading patterns of prominent misinformation tweets. The analysis is presented and updated on a publically accessible dashboard (https://usc-melady.github.io/COVID-19-Tweet-Analysis) to track the nature of online discourse and misinformation about COVID-19 on Twitter from March 1 - June 5, 2020. The dashboard provides a daily list of identified misinformation tweets, along with topics, sentiments, and emerging trends in the COVID-19 Twitter discourse. The dashboard is provided to improve visibility into the nature and quality of information shared online, and provide real-time access to insights and information extracted from the dataset.
The ongoing, fluid nature of the COVID-19 pandemic requires individuals to regularly seek information about best health practices, local community spreading, and public health guidelines. In the absence of a unified response to the pandemic in the Un ited States and clear, consistent directives from federal and local officials, people have used social media to collectively crowdsource COVID-19 elites, a small set of trusted COVID-19 information sources. We take a census of COVID-19 crowdsourced elites in the United States who have received sustained attention on Twitter during the pandemic. Using a mixed methods approach with a panel of Twitter users linked to public U.S. voter registration records, we find that journalists, media outlets, and political accounts have been consistently amplified around COVID-19, while epidemiologists, public health officials, and medical professionals make up only a small portion of all COVID-19 elites on Twitter. We show that COVID-19 elites vary considerably across demographic groups, and that there are notable racial, geographic, and political similarities and disparities between various groups and the demographics of their elites. With this variation in mind, we discuss the potential for using the disproportionate online voice of crowdsourced COVID-19 elites to equitably promote timely public health information and mitigate rampant misinformation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا