ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing Limits of Information Spread with Sequential Seeding

178   0   0.0 ( 0 )
 نشر من قبل Boleslaw Szymanski
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider here information spread which propagates with certain probability from nodes just activated to their not yet activated neighbors. Diffusion cascades can be triggered by activation of even a small set of nodes. Such activation is commonly performed in a single stage. A novel approach based on sequential seeding is analyzed here resulting in three fundamental contributions. First, we propose a coordinated execution of randomized choices to enable precise comparison of different algorithms in general. We apply it here when the newly activated nodes at each stage of spreading attempt to activate their neighbors. Then, we present a formal proof that sequential seeding delivers at least as large coverage as the single stage seeding does. Moreover, we also show that, under modest assumptions, sequential seeding achieves coverage provably better than the single stage based approach using the same number of seeds and node ranking. Finally, we present experimental results showing how single stage and sequential approaches on directed and undirected graphs compare to the well-known greedy approach to provide the objective measure of the sequential seeding benefits. Surprisingly, applying sequential seeding to a simple degree-based selection leads to higher coverage than achieved by the computationally expensive greedy approach currently considered to be the best heuristic.

قيم البحث

اقرأ أيضاً

Information spreading in complex networks is often modeled as diffusing information with certain probability from nodes that possess it to their neighbors that do not. Information cascades are triggered when the activation of a set of initial nodes ( seeds) results in diffusion to large number of nodes. Here, several novel approaches for seed initiation that replace the commonly used activation of all seeds at once with a sequence of initiation stages are introduced. Sequential strategies at later stages avoid seeding highly ranked nodes that are already activated by diffusion active between stages. The gain arises when a saved seed is allocated to a node difficult to reach via diffusion. Sequential seeding and a single stage approach are compared using various seed ranking methods and diffusion parameters on real complex networks. The experimental results indicate that, regardless of the seed ranking method used, sequential seeding strategies deliver better coverage than single stage seeding in about 90% of cases. Longer seeding sequences tend to activate more nodes but they also extend the duration of diffusion. Various variants of sequential seeding resolve the trade-off between the coverage and speed of diffusion differently.
This paper explains the design of a social network analysis framework, developed under DARPAs SocialSim program, with novel architecture that models human emotional, cognitive and social factors. Our framework is both theory and data-driven, and util izes domain expertise. Our simulation effort helps in understanding how information flows and evolves in social media platforms. We focused on modeling three information domains: cryptocurrencies, cyber threats, and software vulnerabilities for the three interrelated social environments: GitHub, Reddit, and Twitter. We participated in the SocialSim DARPA Challenge in December 2018, in which our models were subjected to extensive performance evaluation for accuracy, generalizability, explainability, and experimental power. This paper reports the main concepts and models, utilized in our social media modeling effort in developing a multi-resolution simulation at the user, community, population, and content levels.
We study the process of information dispersal in a network with communication errors and local error-correction. Specifically we consider a simple model where a single bit of information initially known to a single source is dispersed through the net work, and communication errors lead to differences in the agents opinions on this information. Naturally, such errors can very quickly make the communication completely unreliable, and in this work we study to what extent this unreliability can be mitigated by local error-correction, where nodes periodically correct their opinion based on the opinion of (some subset of) their neighbors. We analyze how the error spreads in the early stages of information dispersal by monitoring the average opinion, i.e., the fraction of agents that have the correct information among all nodes that hold an opinion at a given time. Our main results show that even with significant effort in error-correction, tiny amounts of noise can lead the average opinion to be nearly uncorrelated with the truth in early stages. We also propose some local methods to help agents gauge when the information they have has stabilized.
The global COVID-19 pandemic has led to the online proliferation of health-, political-, and conspiratorial-based misinformation. Understanding the reach and belief in this misinformation is vital to managing this crisis, as well as future crises. Th e results from our global survey finds a troubling reach of and belief in COVID-related misinformation, as well as a correlation with those that primarily consume news from social media, and, in the United States, a strong correlation with political leaning.
A sequence of social sensors estimate an unknown parameter (modeled as a state of nature) by performing Bayesian Social Learning, and myopically optimize individual reward functions. The decisions of the social sensors contain quantized information a bout the underlying state. How should a fusion center dynamically incentivize the social sensors for acquiring information about the underlying state? This paper presents five results. First, sufficient conditions on the model parameters are provided under which the optimal policy for the fusion center has a threshold structure. The optimal policy is determined in closed form, and is such that it switches between two exactly specified incentive policies at the threshold. Second, it is shown that the optimal incentive sequence is a sub-martingale, i.e, the optimal incentives increase on average over time. Third, it is shown that it is possible for the fusion center to learn the true state asymptotically by employing a sub-optimal policy; in other words, controlled information fusion with social sensors can be consistent. Fourth, uniform bounds on the average additional cost incurred by the fusion center for employing a sub-optimal policy are provided. This characterizes the trade-off between the cost of information acquisition and consistency for the fusion center. Finally, when it is sufficient to estimate the state with a degree of confidence, uniform bounds on the budget saved by employing policies that guarantee state estimation in finite time are provided.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا