ﻻ يوجد ملخص باللغة العربية
This document takes existing derivations of scattering loss from rough surfaces, and makes them more accessible as a tool to derive the total scattering loss from a rough mirror given its true surface profile. It does not contain any new results and is therefore not intended for submission to a scientific journal in the near future. A rough mirror will diffusively reflect part of an incident wave, limiting the effective specular reflectivity of the mirror. This in turn will limit the finesse of an optical resonator using this mirror. We ask this reflectivity depends on the roughness, in the limit of small roughness. The derivation we will use is based off a detailed and well-written book by JA Ogilvy which is almost always out of the library on loan, is out of print, and we cant find any second-hand copies on the internet. Note that nowhere does Ogilvy use the phrase Debye-Waller factor. We outline how this derivation of scattering loss can be used in practice to calculate the scattering loss given a high-precision experimental measure of mirror profile.
We investigate the wave-optical light scattering properties of deformed thin circular films of constant thickness using the discrete-dipole approximation. Effects on the intensity distribution of the scattered light due to different statistical rough
Light scattering from self-affine homogeneous isotropic random rough surfaces is studied using the ray-optics approximation. Numerical methods are developed to accelerate the first-order scattering simulations from surfaces represented as single-conn
Consider the two-dimensional inverse elastic wave scattering by an infinite rough surface with a Dirichlet boundary condition. A non-interative sampling technique is proposed for detecting the rough surface by taking elastic wave measurements on a bo
We consider the numerical algorithm for the two-dimensional time-harmonic elastic wave scattering by unbounded rough surfaces with Dirichlet boundary condition. A Nystr{o}m method is proposed for the scattering problem based on the integral equation
We consider solid surface scattering of molecules that were subject to strong non-resonant ultrashort laser pulses just before hitting the surface. The pulses modify the rotational states of the molecules, causing their field free alignment, or a rot