ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-invasive imaging of object behind strongly scattering media via cross-spectrum

117   0   0.0 ( 0 )
 نشر من قبل Xingchen Zhao
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a method based on the cross-spectrum of an intensity-modulated CW laser, which can extract a signal from an extremely noisy environment and image objects hidden in turbid media. We theoretically analyzed our scheme and performed the experiment by scanning the object placed in between two ground glass diffusers. The image of the object is retrieved by collecting the amplitudes at the modulation frequency of all the cross-spectra. Our method is non-invasive, easy-to-implement, and can work for both static and dynamic media.

قيم البحث

اقرأ أيضاً

Extending super-resolution imaging techniques to objects hidden in strongly scattering media potentially revolutionize the technical analysis for much broader categories of samples, such as biological tissues. The main challenge is the medias inhomog eneous structures which scramble the light path and create noise-like speckle patterns, hindering the objects visualization even at a low-resolution level. Here, we propose a computational method relying on the objects spatial and temporal fluctuation to visualize nanoscale objects through scattering media non-invasively. The fluctuating object can be achieved by random speckle illumination, illuminating through dynamic scattering media, or flickering emitters. The optical memory effect allows us to derive the object at diffraction limit resolution and estimate the point spreading function (PSF). Multiple images of the fluctuating object are obtained by deconvolution, then super-resolution images are achieved by computing the high order cumulants. Non-linearity of high order cumulant significantly suppresses the noise and artifacts in the resulting images and enhances the resolution by a factor of $sqrt{N}$, where $N$ is the cumulant order. Our non-invasive super-resolution speckle fluctuation imaging (NISFFI) presents a nanoscopy technique with very simple hardware to visualize samples behind scattering media.
Thick biological tissues give rise to not only the scattering of incoming light waves, but also aberrations of the remaining unscattered waves. Due to the inability of existing optical imaging methodologies to overcome both of these problems simultan eously, imaging depth at the sub- micron spatial resolution has remained extremely shallow. Here we present an experimental approach for identifying and eliminating aberrations even in the presence of strong multiple light scattering. For time-gated complex-field maps of reflected waves taken over various illumination channels, we identify two sets of aberration correction maps, one for the illumination path and one for the reflection path, that can preferentially accumulate the unscattered signal waves over the multiple-scattered waves. By performing closed-loop optimization for forward and phase- conjugation processes, we demonstrated a spatial resolution of 600 nm up to the unprecedented imaging depth of 7 scattering mean free paths.
Ghost imaging with thermal light in scattering media is investigated. We demonstrated both theoretically and experimentally for the first time that the image with high quality can still be obtained in the scattering media by ghost imaging. The scatte ring effect on the qualities of the images obtained when the object is illuminated directly by the thermal light and ghost imaging is analyzed theoretically. Its potential applications are also discussed.
On-invasive optical imaging techniques are essential diagnostic tools in many fields. Although various recent methods have been proposed to utilize and control light in multiple scattering media, non-invasive optical imaging through and inside scatte ring layers across a large field of view remains elusive due to the physical limits set by the optical memory effect, especially without wavefront shaping techniques. Here, we demonstrate an approach that enables non-invasive fluorescence imaging behind scattering layers with field-of-views extending well beyond the optical memory effect. The method consists in demixing the speckle patterns emitted by a fluorescent object under variable unknown random illumination, using matrix factorization and a novel fingerprint-based reconstruction. Experimental validation shows the efficiency and robustness of the method with various fluorescent samples, covering a field of view up to three times the optical memory effect range. Our non-invasive imaging technique is simple, neither requires a spatial light modulator nor a guide star, and can be generalized to a wide range of incoherent contrast mechanisms and illumination schemes.
Fluorescence microscopy is widely used in biological imaging, however scattering from tissues strongly limits its applicability to a shallow depth. In this work we adapt a methodology inspired from stellar speckle interferometry, and exploit the opti cal memory effect to enable fluorescence microscopy through a turbid layer. We demonstrate efficient reconstruction of micrometer-size fluorescent objects behind a scattering medium in epi-microscopy, and study the specificities of this imaging modality (magnification, field of view, resolution) as compared to traditional microscopy. Using a modified phase retrieval algorithm to reconstruct fluorescent objects from speckle images, we demonstrate robust reconstructions even in relatively low signal to noise conditions. This modality is particularly appropriate for imaging in biological media, which are known to exhibit relatively large optical memory ranges compatible with tens of micrometers size field of views, and large spectral bandwidths compatible with emission fluorescence spectra of tens of nanometers widths.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا