ﻻ يوجد ملخص باللغة العربية
Thick biological tissues give rise to not only the scattering of incoming light waves, but also aberrations of the remaining unscattered waves. Due to the inability of existing optical imaging methodologies to overcome both of these problems simultaneously, imaging depth at the sub- micron spatial resolution has remained extremely shallow. Here we present an experimental approach for identifying and eliminating aberrations even in the presence of strong multiple light scattering. For time-gated complex-field maps of reflected waves taken over various illumination channels, we identify two sets of aberration correction maps, one for the illumination path and one for the reflection path, that can preferentially accumulate the unscattered signal waves over the multiple-scattered waves. By performing closed-loop optimization for forward and phase- conjugation processes, we demonstrated a spatial resolution of 600 nm up to the unprecedented imaging depth of 7 scattering mean free paths.
Super-resolution imaging with advanced optical systems has been revolutionizing technical analysis in various fields from biological to physical sciences. However, many objects are hidden by strongly scattering media such as rough wall corners or bio
Ghost imaging with thermal light in scattering media is investigated. We demonstrated both theoretically and experimentally for the first time that the image with high quality can still be obtained in the scattering media by ghost imaging. The scatte
We develop a method based on the cross-spectrum of an intensity-modulated CW laser, which can extract a signal from an extremely noisy environment and image objects hidden in turbid media. We theoretically analyzed our scheme and performed the experi
Extending super-resolution imaging techniques to objects hidden in strongly scattering media potentially revolutionize the technical analysis for much broader categories of samples, such as biological tissues. The main challenge is the medias inhomog
A further development of a focusing monochromator concept for X-ray energy resolution of 0.1 meV and below is presented. Theoretical analysis of several optical layouts based on this concept was supported by numerical simulations performed in the Syn