ترغب بنشر مسار تعليمي؟ اضغط هنا

Random Projections for Adversarial Attack Detection

156   0   0.0 ( 0 )
 نشر من قبل Nathan Drenkow
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Whilst adversarial attack detection has received considerable attention, it remains a fundamentally challenging problem from two perspectives. First, while threat models can be well-defined, attacker strategies may still vary widely within those constraints. Therefore, detection should be considered as an open-set problem, standing in contrast to most current detection strategies. These methods take a closed-set view and train binary detectors, thus biasing detection toward attacks seen during detector training. Second, information is limited at test time and confounded by nuisance factors including the label and underlying content of the image. Many of the current high-performing techniques use training sets for dealing with some of these issues, but can be limited by the overall size and diversity of those sets during the detection step. We address these challenges via a novel strategy based on random subspace analysis. We present a technique that makes use of special properties of random projections, whereby we can characterize the behavior of clean and adversarial examples across a diverse set of subspaces. We then leverage the self-consistency (or inconsistency) of model activations to discern clean from adversarial examples. Performance evaluation demonstrates that our technique outperforms ($>0.92$ AUC) competing state of the art (SOTA) attack strategies, while remaining truly agnostic to the attack method itself. It also requires significantly less training data, composed only of clean examples, when compared to competing SOTA methods, which achieve only chance performance, when evaluated in a more rigorous testing scenario.

قيم البحث

اقرأ أيضاً

We propose two training techniques for improving the robustness of Neural Networks to adversarial attacks, i.e. manipulations of the inputs that are maliciously crafted to fool networks into incorrect predictions. Both methods are independent of the chosen attack and leverage random projections of the original inputs, with the purpose of exploiting both dimensionality reduction and some characteristic geometrical properties of adversarial perturbations. The first technique is called RP-Ensemble and consists of an ensemble of networks trained on multiple project
We consider adversarial attacks to a black-box model when no queries are allowed. In this setting, many methods directly attack surrogate models and transfer the obtained adversarial examples to fool the target model. Plenty of previous works investi gated what kind of attacks to the surrogate model can generate more transferable adversarial examples, but their performances are still limited due to the mismatches between surrogate models and the target model. In this paper, we tackle this problem from a novel angle -- instead of using the original surrogate models, can we obtain a Meta-Surrogate Model (MSM) such that attacks to this model can be easier transferred to other models? We show that this goal can be mathematically formulated as a well-posed (bi-level-like) optimization problem and design a differentiable attacker to make training feasible. Given one or a set of surrogate models, our method can thus obtain an MSM such that adversarial examples generated on MSM enjoy eximious transferability. Comprehensive experiments on Cifar-10 and ImageNet demonstrate that by attacking the MSM, we can obtain stronger transferable adversarial examples to fool black-box models including adversarially trained ones, with much higher success rates than existing methods. The proposed method reveals significant security challenges of deep models and is promising to be served as a state-of-the-art benchmark for evaluating the robustness of deep models in the black-box setting.
116 - Jintang Li , Tao Xie , Liang Chen 2020
Recent studies have shown that graph neural networks (GNNs) are vulnerable against perturbations due to lack of robustness and can therefore be easily fooled. Currently, most works on attacking GNNs are mainly using gradient information to guide the attack and achieve outstanding performance. However, the high complexity of time and space makes them unmanageable for large scale graphs and becomes the major bottleneck that prevents the practical usage. We argue that the main reason is that they have to use the whole graph for attacks, resulting in the increasing time and space complexity as the data scale grows. In this work, we propose an efficient Simplified Gradient-based Attack (SGA) method to bridge this gap. SGA can cause the GNNs to misclassify specific target nodes through a multi-stage attack framework, which needs only a much smaller subgraph. In addition, we present a practical metric named Degree Assortativity Change (DAC) to measure the impacts of adversarial attacks on graph data. We evaluate our attack method on four real-world graph networks by attacking several commonly used GNNs. The experimental results demonstrate that SGA can achieve significant time and memory efficiency improvements while maintaining competitive attack performance compared to state-of-art attack techniques. Codes are available via: https://github.com/EdisonLeeeee/SGAttack.
Many recent studies have shown that deep neural models are vulnerable to adversarial samples: images with imperceptible perturbations, for example, can fool image classifiers. In this paper, we present the first type-specific approach to generating a dversarial examples for object detection, which entails detecting bounding boxes around multiple objects present in the image and classifying them at the same time, making it a harder task than against image classification. We specifically aim to attack the widely used Faster R-CNN by changing the predicted label for a particular object in an image: where prior work has targeted one specific object (a stop sign), we generalise to arbitrary objects, with the key challenge being the need to change the labels of all bounding boxes for all instances of that object type. To do so, we propose a novel method, named Pick-Object-Attack. Pick-Object-Attack successfully adds perturbations only to bounding boxes for the targeted object, preserving the labels of other detected objects in the image. In terms of perceptibility, the perturbations induced by the method are very small. Furthermore, for the first time, we examine the effect of adversarial attacks on object detection in terms of a downstream task, image captioning; we show that where a method that can modify all object types leads to very obvious changes in captions, the changes from our constrained attack are much less apparent.
Deep learning-based time series models are being extensively utilized in engineering and manufacturing industries for process control and optimization, asset monitoring, diagnostic and predictive maintenance. These models have shown great improvement in the prediction of the remaining useful life (RUL) of industrial equipment but suffer from inherent vulnerability to adversarial attacks. These attacks can be easily exploited and can lead to catastrophic failure of critical industrial equipment. In general, different adversarial perturbations are computed for each instance of the input data. This is, however, difficult for the attacker to achieve in real time due to higher computational requirement and lack of uninterrupted access to the input data. Hence, we present the concept of universal adversarial perturbation, a special imperceptible noise to fool regression based RUL prediction models. Attackers can easily utilize universal adversarial perturbations for real-time attack since continuous access to input data and repetitive computation of adversarial perturbations are not a prerequisite for the same. We evaluate the effect of universal adversarial attacks using NASA turbofan engine dataset. We show that addition of universal adversarial perturbation to any instance of the input data increases error in the output predicted by the model. To the best of our knowledge, we are the first to study the effect of the universal adversarial perturbation on time series regression models. We further demonstrate the effect of varying the strength of perturbations on RUL prediction models and found that model accuracy decreases with the increase in perturbation strength of the universal adversarial attack. We also showcase that universal adversarial perturbation can be transferred across different models.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا