ترغب بنشر مسار تعليمي؟ اضغط هنا

Deformations of GR, Geometrodynamics and Reality Conditions

49   0   0.0 ( 0 )
 نشر من قبل Ermis Mitsou
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In four dimensions complexified General Relativity (GR) can be non-trivially deformed: There exists an (infinite-parameter) set of modifications all having the same count of degrees of freedom. It is trivial to impose reality conditions that gi

قيم البحث

اقرأ أيضاً

We derive the Hamiltonian for spherically symmetric Lovelock gravity using the geometrodynamics approach pioneered by Kuchav{r} in the context of four-dimensional general relativity. When written in terms of the areal radius, the generalized Misner-S harp mass and their conjugate momenta, the generic Lovelock action and Hamiltonian take on precisely the same simple forms as in general relativity. This result supports the interpretation of Lovelock gravity as the natural higher-dimensional extension of general relativity. It also provides an important first step towards the study of the quantum mechanics, Hamiltonian thermodynamics and formation of generic Lovelock black holes.
We discuss reality conditions and the relation between spacetime diffeomorphisms and gauge transformations in Ashtekars complex formulation of general relativity. We produce a general theoretical framework for the stabilization algorithm for the real ity conditions, which is different from Diracs method of stabilization of constraints. We solve the problem of the projectability of the diffeomorphism transformations from configuration-velocity space to phase space, linking them to the reality conditions. We construct the complete set of canonical generators of the gauge group in the phase space which includes all the gauge variables. This result proves that the canonical formalism has all the gauge structure of the Lagrangian theory, including the time diffeomorphisms.
51 - S.Deser 2017
We show that higher curvature order gravities, in particular the propagating quadratic curvature models, cannot be derived by self-coupling from their linear, flat space, forms, except through an unphysical version of linearization; only GR can. Sepa rately, we comment on an early version of the self-coupling bootstrap.
The canonical quantum theory of gravity -- Quantum Geometrodynamics (QG) is applied to the homogeneous Bianchi type IX cosmological model. As a result, the framework for the quantum theory of homogeneous cosmologies is developed. We show that the the ory is internally consistent, and prove that it possesses the correct classical limit (the theory of general relativity). To emphasize the special role that the constraints play in this new theory we, compare it to the traditional ADM square-root and Wheeler-DeWitt quantization schemes. We show that, unlike the traditional approaches, QG leads to a well-defined Schrodinger equation for the wave-function of the universe that is inherently coupled to the expectation value of the constraint equations. This coupling to the constraints is responsible for the appearance of a coherent spacetime picture. Thus, the physical meaning of the constraints of the theory is quite different from Diracs interpretation. In light of this distinctive feature of the theory, we readdress the question of the dark energy effects in the Bianchi IX cosmological model for highly non-classical quantum states. We show that, at least for this model, for any choice of the initial wave function, the quantum corrections will not produce the accelerated expansion of the universe.
Energy conditions for matter fields are comprehensively investigated in arbitrary $n(ge 3)$ dimensions without specifying future and past directions locally. We classify an energy-momentum tensor into $n$-dimensional counterparts of the Hawking-Ellis type I to IV, where type III is defined by a more useful form than those adopted by Hawking and Ellis and other authors to identify the type-III energy-momentum tensor in a given spacetime. We also provide necessary and sufficient conditions for types I and II as inequalities for the orthonormal components of the energy-momentum tensor in a canonical form and show that types III and IV violate all the standard energy conditions. Lastly, we study energy conditions for a set of physically motivated matter fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا