ﻻ يوجد ملخص باللغة العربية
We derive the Hamiltonian for spherically symmetric Lovelock gravity using the geometrodynamics approach pioneered by Kuchav{r} in the context of four-dimensional general relativity. When written in terms of the areal radius, the generalized Misner-Sharp mass and their conjugate momenta, the generic Lovelock action and Hamiltonian take on precisely the same simple forms as in general relativity. This result supports the interpretation of Lovelock gravity as the natural higher-dimensional extension of general relativity. It also provides an important first step towards the study of the quantum mechanics, Hamiltonian thermodynamics and formation of generic Lovelock black holes.
Recently a {it local} true (completely gauge fixed) Hamiltonian for spherically symmetric collapse was derived in terms of Ashtekar variables. We show that such a local Hamiltonian follows directly from the geometrodynamics of gravity theories that o
A four-dimensional regularization of Lovelock-Lanczos gravity up to an arbitrary curvature order is considered. We show that Lovelock-Lanczos terms can provide a non-trivial contribution to the Einstein field equations in four dimensions, for spheric
We present a detailed study of the spherically symmetric solutions in Lorentz breaking massive gravity. There is an undetermined function $mathcal{F}(X, w_1, w_2, w_3)$ in the action of St{u}ckelberg fields $S_{phi}=Lambda^4int{d^4xsqrt{-g}mathcal{F}
General relativity can be formulated equivalently with a non-Riemannian geometry that associates with an affine connection of nonzero nonmetricity $Q$ but vanishing curvature $R$ and torsion $T$. Modification based on this description of gravity
In a thorough paper Kuchar has examined the canonical reduction of the most general action functional describing the geometrodynamics of the maximally extended Schwarzschild geometry. This reduction yields the true degrees of freedom for (vacuum) sph