ﻻ يوجد ملخص باللغة العربية
We discuss reality conditions and the relation between spacetime diffeomorphisms and gauge transformations in Ashtekars complex formulation of general relativity. We produce a general theoretical framework for the stabilization algorithm for the reality conditions, which is different from Diracs method of stabilization of constraints. We solve the problem of the projectability of the diffeomorphism transformations from configuration-velocity space to phase space, linking them to the reality conditions. We construct the complete set of canonical generators of the gauge group in the phase space which includes all the gauge variables. This result proves that the canonical formalism has all the gauge structure of the Lagrangian theory, including the time diffeomorphisms.
It might seem that a choice of a time coordinate in Hamiltonian formulations of general relativity breaks the full four-dimensional diffeomorphism covariance of the theory. This is not the case. We construct explicitly the complete set of gauge gener
Within a first-order framework, we comprehensively examine the role played by boundary conditions in the canonical formulation of a completely general two-dimensional gravity model. Our analysis particularly elucidates the perennial themes of mass an
We construct explicitly generators of projectable four-dimensional diffeomorphisms and triad rotation gauge symmetries in a model of vacuum gravity where the fundamental dynamical variables in a Palatini formulation are taken to be a lapse, shift, de
We systematically derive an action for a nonrelativistic spinning partile in flat background and discuss its canonical formulation in both Lagrangian and Hamiltonian approaches. This action is taken as the starting point for deriving the correspondin
This work demonstrates that a complete description of the interaction of matter and all forces, gravitational and non-gravitational, can in fact be realized within a quantum affine algebraic framework. Using the affine group formalism, we construct e