ﻻ يوجد ملخص باللغة العربية
The recent successful experimental observation of quantum anomalous Hall effect in graphene under laser irradiation demonstrates the feasibility of controlling single particle band structure by lasers. Here we study superconductivity in a Hubbard honeycomb model in the presence of an electromagnetic drive. We start with Hubbard honeycomb model in the presence of an electromagnetic field drive, both circularly and linearly polarized light and map it onto a Floquet $t$-$J$ model. We explore conditions on the drive under which one can induce superconductivity (SC) in the system. We study the Floquet $t$-$J$ model within the mean-field theory in the singlet pairing channel and explore superconductivity for small doping in the system using the Bogoliubov-de Gennes approach. We uncover several superconducting phases, which break lattice or time reversal symmetries in addition to the standard $U(1)$ symmetry. We show that the unconventional chiral SC order parameter ($d pm id$) can be driven to a nematic SC order parameter ($s+d$) in the presence of a circularly polarized light. The $d+id$ SC order parameter breaks time reversal symmetry and is topologically nontrivial, and supports chiral edge modes. We further show that the three-fold nematic degeneracy can be lifted using linearly polarized light. Our work, therefore, provides a generic framework for inducing and controlling SC in the Hubbard honeycomb model, with possible application to graphene and other two-dimensional materials.
Interplay between antiferromagnetism and superconductivity is studied by using the 3-dimensional nearly half-filled Hubbard model with anisotropic transfer matrices $t_{rm z}$ and $t_{perp}$. The phase diagrams are calculated for varying values of th
Using a dynamical cluster quantum Monte Carlo approximation we investigate the d-wave superconducting transition temperature $T_c$ in the doped 2D repulsive Hubbard model with a weak inhomogeneity. The inhomogeneity is introduced in the hoppings $tp$
In order to discuss superconductivity in orbital degenerate systems, a microscopic Hamiltonian is introduced. Based on the degenerate model, a strong-coupling theory of superconductivity is developed within the fluctuation exchange (FLEX) approximati
We predict two topological superconducting phases in microscopic models arising from the Berry phase associated with the valley degree of freedom in gapped Dirac honeycomb systems. The first one is a topological helical spin-triplet superconductor wi
Interplay of Pomeranchuk instability (spontaneous symmetry breaking of the Fermi surface) and d-wave superconductivity is studied for the repulsive Hubbard model on the square lattice with the dynamical mean field theory combined with the fluctuation