ﻻ يوجد ملخص باللغة العربية
Interplay of Pomeranchuk instability (spontaneous symmetry breaking of the Fermi surface) and d-wave superconductivity is studied for the repulsive Hubbard model on the square lattice with the dynamical mean field theory combined with the fluctuation exchange approximation (FLEX+DMFT). We show that the four-fold symmetric Fermi surface becomes unstable against a spontaneous distortion into two-fold near the van Hove filling, where the symmetry of superconductivity coexisting with the Pomeranchuk distorted Fermi surface is modified from the d-wave pairing to (d+s)-wave. By systematically shifting the position of van Hove filling with varied second- and third-neighbor hoppings, we find that the transition temperature $T_{rm c}^{rm PI}$ of Pomeranchuk instability is more sensitively affected by the position of van Hove filling than the superconducting $T_{rm c}^{rm SC}$. This implies that the filling region for strong Pomeranchuk instability and that for strong superconducting fluctuations can be separated, and Pomeranchuk instability can appear even if the peak of $T_c^{rm PI}$ is lower than the peak of $T_c^{rm SC}$. An interesting observation is that the Fermi surface distortion can enhance the superconducting $T_{rm c}^{rm SC}$ in the overdoped regime, which is explained with a perturbation picture for small distortions.
Interplay between antiferromagnetism and superconductivity is studied by using the 3-dimensional nearly half-filled Hubbard model with anisotropic transfer matrices $t_{rm z}$ and $t_{perp}$. The phase diagrams are calculated for varying values of th
We compute the two-particle quantities relevant for superconducting correlations in the two-dimensional Hubbard model within the dynamical cluster approximation. In the normal state we identify the parameter regime in density, interaction, and second
Using a dynamical cluster quantum Monte Carlo approximation we investigate the d-wave superconducting transition temperature $T_c$ in the doped 2D repulsive Hubbard model with a weak inhomogeneity. The inhomogeneity is introduced in the hoppings $tp$
Here we have developed a FLEX+DMFT formalism, where the symmetry properties of the system are incorporated by constructing a SO(4) generalization of the conventional fluctuation-exchange approximation (FLEX) coupled self-consistently to the dynamical
The Green function (GF) equation of motion technique for solving the effective two-band Hubbard model of high-T_c superconductivity in cuprates [N.M. Plakida et al., Phys. Rev. B, v. 51, 16599 (1995); JETP, v. 97, 331 (2003)] rests on the Hubbard ope