ترغب بنشر مسار تعليمي؟ اضغط هنا

Nitrogen and argon doping of niobium for superconducting radio frequency cavities: a pathway to highly efficient accelerating structures

136   0   0.0 ( 0 )
 نشر من قبل Anna Grassellino
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a surface treatment that systematically improves the quality factor of niobium radio frequency cavities beyond the expected limit for niobium. A combination of annealing in a partial pressure of nitrogen or argon gas and subsequent electropolishing of the niobium cavity surface leads to unprecedented low values of the microwave surface resistance, and an improvement in the efficiency of the accelerating structures up to a factor of 3, reducing the cryogenic load of superconducting cavities for both pulsed and continuous duty cycles. The field dependence of the surface resistance is reversed compared to standardly treated niobium.

قيم البحث

اقرأ أيضاً

As a result of a collaboration between Jefferson Lab and niobium manufacturer CBMM, ingot niobium was explored as a possible material for superconducting radiofrequency (SRF) cavity fabrication. The first single cell cavity from large grain high puri ty niobium was fabricated and successfully tested at Jefferson Lab in 2004. This pioneering work triggered research activities in other SRF laboratories around the world. Large grain niobium became not only an interesting alternative material for cavity builders, but also material scientists and surface scientists were eager to participate in the development of this material. Most of the original expectations for this material of being less costly and allowing less expensive fabrication and treatment procedures at the same performance levels in cavities have been met. Many single cell cavities made from material of different suppliers have been tested successfully and several multi-cell cavities have shown the performances comparable to the best cavities made from standard poly-crystalline niobium. Several 9-cell cavities fabricated by Research Instruments and tested at DESY exceeded the best performing fine grain cavities with a record accelerating gradient of Eacc = 45.6 MV/m. Recently- at JLab- by using a new furnace treatment procedure a single cell cavity made of ingot niobium performed at a remarkably high Q0-value (~5x10^10) at an accelerating gradient of ~20 MV/m, at 2K. Such performance levels push the state-of-the art of SRF technology to new limits and are of great interest for future accelerators. This contribution reviews the development of ingot niobium technology and attempts to make a case for this material being the choice for future accelerators.
We report the rf performance of a single-cell superconducting radiofrequency cavity after low temperature baking in a nitrogen environment. A significant increase in quality factor has been observed when the cavity was heat treated in the temperature range of 120-160 {deg}C with a nitrogen partial pressure of ~25 mTorr. This increase in quality factor as well as the Q-rise phenomenon (anti-Q-slope) is similar to those previously obtained with high temperature nitrogen doping as well as titanium doping. In this study, a cavity N2-treated at 120 {deg}C and at140 {deg}C, showed no degradation in accelerating gradient, however the accelerating gradient was degraded by 25 with a 160 {deg}C N2 treatment. Sample coupons treated in the same conditions as the cavity were analyzed by scanning electron microscope, x-ray photoelectron spectroscopy and secondary ion mass spectroscopy revealed a complex surface composition of Nb_2O5, NbO and NbN(1-x)Ox within the rf penetration depth. Furthermore, magnetization measurements showed no significant change on bulk superconducting properties.
80 - D. Bafia 2021
Superconducting radio-frequency (SRF) niobium cavities are the modern means of particle acceleration and an enabling technology for record coherence superconducting quantum systems and ultra-sensitive searches for new physics. Here we report a system atic effect observed on a large set of bulk SRF cavities - an anomalous decrease of the resonant frequency at temperatures just below the superconducting transition temperature - which opens up a new means of understanding the physics behind nitrogen doping and other modern cavity surface treatments relevant for future quality factor and coherence improvements. The magnitude of the frequency change correlates systematically with the near-surface impurity distribution in studied cavities and with the observed $T_c$ variation. We also present the first demonstration of the coherence peak in the real part of the AC complex conductivity in Nb SRF cavities and show that its magnitude varies with impurity distribution.
109 - S. Casalbuoni 2004
A systematic study is presented on the superconductivity (sc) parameters of the ultrapure niobium used for the fabrication of the nine-cell 1.3 GHz cavities for the linear collider project TESLA. Cylindrical Nb samples have been subjected to the same surface treatments that are applied to the TESLA cavities: buffered chemical polishing (BCP), electrolytic polishing (EP), low-temperature bakeout (LTB). The magnetization curves and the complex magnetic susceptibility have been measured over a wide range of temperatures and dc magnetic fields, and also for di erent frequencies of the applied ac magnetic field. The bulk superconductivity parameters such as the critical temperature Tc = 9.26 K and the upper critical field Bc2(0) = 410 mT are found to be in good agreement with previous data. Evidence for surface superconductivity at fields above Bc2 is found in all samples. The critical surface field exceeds the Ginzburg-Landau field Bc3 = 1.695Bc2 by about 10% in BCP-treated samples and increases even further if EP or LTB are applied. From the field dependence of the susceptibility and a power-law analysis of the complex ac conductivity and resistivity the existence of two different phases of surface superconductivity can be established which resemble the Meissner and Abrikosov phases in the bulk: (1) coherent surface superconductivity, allowing sc shielding currents flowing around the entire cylindrical sample, for external fields B in the range between Bc2 and Bcohc3, and (2) incoherent surface superconductivity with disconnected sc domains between Bcohc3 and Bc3. The coherent critical surface field separating the two phases is found to be Bcoh c3 = 0.81Bc3 for all samples. The exponents in the power law analysis are different for BCP and EP samples, pointing to different surface topologies.
In this paper we present the discovery of a new surface treatment applied to superconducting radio frequency (SRF) niobium cavities, leading to unprecedented accelerating fields of 49 MV/m in TESLA-shaped cavities, in continuous wave (CW); the corres ponding peak magnetic fields are the highest ever measured in CW, about 210 mT. For TESLA-shape cavities the maximum quench field ever achieved was ~45 MV/m - reached very rarely- with most typical values being below 40 MV/m. These values are reached for niobium surfaces treated with electropolishing followed by the so called mild bake, a 120C vacuum bake (for 48 hours for fine grain and 24 hours for large grain surfaces). We discover that the addition during the mild bake of a step at 75C for few hours, before the 120C, increases systematically the quench fields up to unprecedented values of 49 MV/m. The significance of the result lays not only in the relative improvement, but in the proof that niobium surfaces can sustain and exceed CW radio frequency magnetic fields much larger than Hc1, pointing to an extrinsic nature of the current field limitations, and therefore to the potential to reach accelerating fields well beyond the current state of the art.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا