ﻻ يوجد ملخص باللغة العربية
We propose an experimental setup to search for Axion-like particles (ALPs) using two superconducting radio-frequency cavities. In this light-shining-through-wall setup the axion is sourced by two modes with large fields and nonzero $vec Ecdot vec B$ in an emitter cavity. In a nearby identical cavity only one of these modes, the spectator, is populated while the other is a quiet signal mode. Axions can up-convert off the spectator mode into signal photons. We discuss the physics reach of this setup finding potential to explore new ALP parameter space. Enhanced sensitivity can be achieved if high-level modes can be used, thanks to improved phase matching between the excited modes and the generated axion field. We also discuss the potential leakage noise effects and their mitigation, which is aided by O(GHz) separation between the spectator and signal frequencies.
We propose an approach to search for axion dark matter with a specially designed superconducting radio frequency cavity, targeting axions with masses $m_a lesssim 10^{-6} text{ eV}$. Our approach exploits axion-induced transitions between nearly dege
In top squark (stop) searches with a compressed spectrum, it is very helpful to consider the stop production recoiling against a hard jet from the initial state radiation to obtain a significant amount of missing transverse energy. In particular, the
Recently, heat treatment between 250 C and 500 C has been attempted to improve quality factor of superconducting radio-frequency cavities at FNAL and KEK. Experiments of such medium temperature (mid-T) bake with furnaces have also been carried out at
We propose a new collider probe for axion-like particles (ALPs), and more generally for pseudo-Goldstone bosons: non-resonant searches which take advantage of the derivative nature of their interactions with Standard Model particles. ALPs can partici
The scan rate of an axion haloscope is proportional to the square of the cavity volume. In this paper, a new class of thin-shell cavities are proposed to search for axionic dark matter. These cavities feature active volume much larger (>20X) than tha