ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling COVID-19 dynamics in Illinois under non-pharmaceutical interventions

128   0   0.0 ( 0 )
 نشر من قبل Nigel Goldenfeld
 تاريخ النشر 2020
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present modeling of the COVID-19 epidemic in Illinois, USA, capturing the implementation of a Stay-at-Home order and scenarios for its eventual release. We use a non-Markovian age-of-infection model that is capable of handling long and variable time delays without changing its model topology. Bayesian estimation of model parameters is carried out using Markov Chain Monte Carlo (MCMC) methods. This framework allows us to treat all available input information, including both the previously published parameters of the epidemic and available local data, in a uniform manner. To accurately model deaths as well as demand on the healthcare system, we calibrate our predictions to total and in-hospital deaths as well as hospital and ICU bed occupancy by COVID-19 patients. We apply this model not only to the state as a whole but also its sub-regions in order to account for the wide disparities in population size and density. Without prior information on non-pharmaceutical interventions (NPIs), the model independently reproduces a mitigation trend closely matching mobility data reported by Google and Unacast. Forward predictions of the model provide robust estimates of the peak position and severity and also enable forecasting the regional-dependent results of releasing Stay-at-Home orders. The resulting highly constrained narrative of the epidemic is able to provide estimates of its unseen progression and inform scenarios for sustainable monitoring and control of the epidemic.

قيم البحث

اقرأ أيضاً

We develop a novel hybrid epidemiological model and a specific methodology for its calibration to distinguish and assess the impact of mobility restrictions (given by Apples mobility trends data) from other complementary non-pharmaceutical interventi ons (NPIs) used to control the spread of COVID-19. Using the calibrated model, we estimate that mobility restrictions contribute to 47 % (US States) and 47 % (worldwide) of the overall suppression of the disease transmission rate using data up to 13/08/2020. The forecast capacity of our model was evaluated doing four-weeks ahead predictions. Using data up to 30/06/20 for calibration, the mean absolute percentage error (MAPE) of the prediction of cumulative deceased individuals was 5.0 % for the United States (51 states) and 6.7 % worldwide (49 countries). This MAPE was reduced to 3.5% for the US and 3.8% worldwide using data up to 13/08/2020. We find that the MAPE was higher for the total confirmed cases at 11.5% worldwide and 10.2% for the US States using data up to 13/08/2020. Our calibrated model achieves an average R-Squared value for cumulative confirmed and deceased cases of 0.992 using data up to 30/06/20 and 0.98 using data up to 13/08/20.
We highlight the usefulness of city-scale agent-based simulators in studying various non-pharmaceutical interventions to manage an evolving pandemic. We ground our studies in the context of the COVID-19 pandemic and demonstrate the power of the simul ator via several exploratory case studies in two metropolises, Bengaluru and Mumbai. Such tools become common-place in any city administrations tool kit in our march towards digital health.
It is well recognized that population heterogeneity plays an important role in the spread of epidemics. While individual variations in social activity are often assumed to be persistent, i.e. constant in time, here we discuss the consequences of dyna mic heterogeneity. By integrating the stochastic dynamics of social activity into traditional epidemiological models we demonstrate the emergence of a new long timescale governing the epidemic in broad agreement with empirical data. Our model captures multiple features of real-life epidemics such as COVID-19, including prolonged plateaus and multiple waves, which are transiently suppressed due to the dynamic nature of social activity. The existence of the long timescale due to the interplay between epidemic and social dynamics provides a unifying picture of how a fast-paced epidemic typically will transition to the endemic state.
82 - Nicola Perra 2020
Infectious diseases and human behavior are intertwined. On one side, our movements and interactions are the engines of transmission. On the other, the unfolding of viruses might induce changes to our daily activities. While intuitive, our understandi ng of such feedback loop is still limited. Before COVID-19 the literature on the subject was mainly theoretical and largely missed validation. The main issue was the lack of empirical data capturing behavioral change induced by diseases. Things have dramatically changed in 2020. Non-pharmaceutical interventions (NPIs) have been the key weapon against the SARS-CoV-2 virus and affected virtually any societal process. Travels bans, events cancellation, social distancing, curfews, and lockdowns have become unfortunately very familiar. The scale of the emergency, the ease of survey as well as crowdsourcing deployment guaranteed by the latest technology, several Data for Good programs developed by tech giants, major mobile phone providers, and other companies have allowed unprecedented access to data describing behavioral changes induced by the pandemic. Here, I aim to review some of the vast literature written on the subject of NPIs during the COVID-19 pandemic. In doing so, I analyze 347 articles written by more than 2518 of authors in the last $12$ months. While the large majority of the sample was obtained by querying PubMed, it includes also a hand-curated list. Considering the focus, and methodology I have classified the sample into seven main categories: epidemic models, surveys, comments/perspectives, papers aiming to quantify the effects of NPIs, reviews, articles using data proxies to measure NPIs, and publicly available datasets describing NPIs. I summarize the methodology, data used, findings of the articles in each category and provide an outlook highlighting future challenges as well as opportunities
145 - Carlo R. Contaldi 2020
Timely estimation of the current value for COVID-19 reproduction factor $R$ has become a key aim of efforts to inform management strategies. $R$ is an important metric used by policy-makers in setting mitigation levels and is also important for accur ate modelling of epidemic progression. This brief paper introduces a method for estimating $R$ from biased case testing data. Using testing data, rather than hospitalisation or death data, provides a much earlier metric along the symptomatic progression scale. This can be hugely important when fighting the exponential nature of an epidemic. We develop a practical estimator and apply it to Scottish case testing data to infer a current (20 May 2020) $R$ value of $0.74$ with $95%$ confidence interval $[0.48 - 0.86]$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا