ﻻ يوجد ملخص باللغة العربية
Deep embedded clustering has become a dominating approach to unsupervised categorization of objects with deep neural networks. The optimization of the most popular methods alternates between the training of a deep autoencoder and a k-means clustering of the autoencoders embedding. The diachronic setting, however, prevents the former to benefit from valuable information acquired by the latter. In this paper, we present an alternative where the autoencoder and the clustering are learned simultaneously. This is achieved by providing novel theoretical insight, where we show that the objective function of a certain class of Gaussian mixture models (GMMs) can naturally be rephrased as the loss function of a one-hidden layer autoencoder thus inheriting the built-in clustering capabilities of the GMM. That simple neural network, referred to as the clustering module, can be integrated into a deep autoencoder resulting in a deep clustering model able to jointly learn a clustering and an embedding. Experiments confirm the equivalence between the clustering module and Gaussian mixture models. Further evaluations affirm the empirical relevance of our deep architecture as it outperforms related baselines on several data sets.
We report a neural architecture search framework, BioNAS, that is tailored for biomedical researchers to easily build, evaluate, and uncover novel knowledge from interpretable deep learning models. The introduction of knowledge dissimilarity function
Classical signal recovery based on $ell_1$ minimization solves the least squares problem with all available measurements via sparsity-promoting regularization. In practice, it is often the case that not all measurements are available or required for
We propose a new variant of AMSGrad, a popular adaptive gradient based optimization algorithm widely used for training deep neural networks. Our algorithm adds prior knowledge about the sequence of consecutive mini-batch gradients and leverages its u
In this paper, we propose a simple algorithm to cluster nonnegative data lying in disjoint subspaces. We analyze its performance in relation to a certain measure of correlation between said subspaces. We use our clustering algorithm to develop a matr
Computer simulations have become a popular tool of assessing complex skills such as problem-solving skills. Log files of computer-based items record the entire human-computer interactive processes for each respondent. The response processes are very