ترغب بنشر مسار تعليمي؟ اضغط هنا

G-RCN: Optimizing the Gap between Classification and Localization Tasks for Object Detection

57   0   0.0 ( 0 )
 نشر من قبل Li Xiao
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Multi-task learning is widely used in computer vision. Currently, object detection models utilize shared feature map to complete classification and localization tasks simultaneously. By comparing the performance between the original Faster R-CNN and that with partially separated feature maps, we show that: (1) Sharing high-level features for the classification and localization tasks is sub-optimal; (2) Large stride is beneficial for classification but harmful for localization; (3) Global context information could improve the performance of classification. Based on these findings, we proposed a paradigm called Gap-optimized region based convolutional network (G-RCN), which aims to separating these two tasks and optimizing the gap between them. The paradigm was firstly applied to correct the current ResNet protocol by simply reducing the stride and moving the Conv5 block from the head to the feature extraction network, which brings 3.6 improvement of AP70 on the PASCAL VOC dataset and 1.5 improvement of AP on the COCO dataset for ResNet50. Next, the new method is applied on the Faster R-CNN with backbone of VGG16,ResNet50 and ResNet101, which brings above 2.0 improvement of AP70 on the PASCAL VOC dataset and above 1.9 improvement of AP on the COCO dataset. Noticeably, the implementation of G-RCN only involves a few structural modifications, with no extra module added.



قيم البحث

اقرأ أيضاً

Object detectors are usually trained with large amount of labeled data, which is expensive and labor-intensive. Pre-trained detectors applied to unlabeled dataset always suffer from the difference of dataset distribution, also called domain shift. Do main adaptation for object detection tries to adapt the detector from labeled datasets to unlabeled ones for better performance. In this paper, we are the first to reveal that the region proposal network (RPN) and region proposal classifier~(RPC) in the endemic two-stage detectors (e.g., Faster RCNN) demonstrate significantly different transferability when facing large domain gap. The region classifier shows preferable performance but is limited without RPNs high-quality proposals while simple alignment in the backbone network is not effective enough for RPN adaptation. We delve into the consistency and the difference of RPN and RPC, treat them individually and leverage high-confidence output of one as mutual guidance to train the other. Moreover, the samples with low-confidence are used for discrepancy calculation between RPN and RPC and minimax optimization. Extensive experimental results on various scenarios have demonstrated the effectiveness of our proposed method in both domain-adaptive region proposal generation and object detection. Code is available at https://github.com/GanlongZhao/CST_DA_detection.
Knowledge distillation (KD) has witnessed its powerful ability in learning compact models in deep learning field, but it is still limited in distilling localization information for object detection. Existing KD methods for object detection mainly foc us on mimicking deep features between teacher model and student model, which not only is restricted by specific model architectures, but also cannot distill localization ambiguity. In this paper, we first propose localization distillation (LD) for object detection. In particular, our LD can be formulated as standard KD by adopting the general localization representation of bounding box. Our LD is very flexible, and is applicable to distill localization ambiguity for arbitrary architecture of teacher model and student model. Moreover, it is interesting to find that Self-LD, i.e., distilling teacher model itself, can further boost state-of-the-art performance. Second, we suggest a teacher assistant (TA) strategy to fill the possible gap between teacher model and student model, by which the distillation effectiveness can be guaranteed even the selected teacher model is not optimal. On benchmark datasets PASCAL VOC and MS COCO, our LD can consistently improve the performance for student detectors, and also boosts state-of-the-art detectors notably. Our source code and trained models are publicly available at https://github.com/HikariTJU/LD
When interacting with objects through cameras, or pictures, users often have a specific intent. For example, they may want to perform a visual search. However, most object detection models ignore the user intent, relying on image pixels as their only input. This often leads to incorrect results, such as lack of a high-confidence detection on the object of interest, or detection with a wrong class label. In this paper we investigate techniques to modulate standard object detectors to explicitly account for the user intent, expressed as an embedding of a simple query. Compared to standard object detectors, query-modulated detectors show superior performance at detecting objects for a given label of interest. Thanks to large-scale training data synthesized from standard object detection annotations, query-modulated detectors can also outperform specialized referring expression recognition systems. Furthermore, they can be simultaneously trained to solve for both query-modulated detection and standard object detection.
93 - Xin Lu , Quanquan Li , Buyu Li 2020
Modern object detection methods can be divided into one-stage approaches and two-stage ones. One-stage detectors are more efficient owing to straightforward architectures, but the two-stage detectors still take the lead in accuracy. Although recent w ork try to improve the one-stage detectors by imitating the structural design of the two-stage ones, the accuracy gap is still significant. In this paper, we propose MimicDet, a novel and efficient framework to train a one-stage detector by directly mimic the two-stage features, aiming to bridge the accuracy gap between one-stage and two-stage detectors. Unlike conventional mimic methods, MimicDet has a shared backbone for one-stage and two-stage detectors, then it branches into two heads which are well designed to have compatible features for mimicking. Thus MimicDet can be end-to-end trained without the pre-train of the teacher network. And the cost does not increase much, which makes it practical to adopt large networks as backbones. We also make several specialized designs such as dual-path mimicking and staggered feature pyramid to facilitate the mimicking process. Experiments on the challenging COCO detection benchmark demonstrate the effectiveness of MimicDet. It achieves 46.1 mAP with ResNeXt-101 backbone on the COCO test-dev set, which significantly surpasses current state-of-the-art methods.
Training object detectors with only image-level annotations is very challenging because the target objects are often surrounded by a large number of background clutters. Many existing approaches tackle this problem through object proposal mining. How ever, the collected positive regions are either low in precision or lack of diversity, and the strategy of collecting negative regions is not carefully designed, neither. Moreover, training is often slow because region selection and object detector training are processed separately. In this context, the primary contribution of this work is to improve weakly supervised detection with an optimized region selection strategy. The proposed method collects purified positive training regions by progressively removing easy background clutters, and selects discriminative negative regions by mining class-specific hard samples. This region selection procedure is further integrated into a CNN-based weakly supervised detection (WSD) framework, and can be performed in each stochastic gradient descent mini-batch during training. Therefore, the entire model can be trained end-to-end efficiently. Extensive evaluation results on PASCAL VOC 2007, VOC 2010 and VOC 2012 datasets are presented which demonstrate that the proposed method effectively improves WSD.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا