ترغب بنشر مسار تعليمي؟ اضغط هنا

MimicDet: Bridging the Gap Between One-Stage and Two-Stage Object Detection

94   0   0.0 ( 0 )
 نشر من قبل Xin Lu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Modern object detection methods can be divided into one-stage approaches and two-stage ones. One-stage detectors are more efficient owing to straightforward architectures, but the two-stage detectors still take the lead in accuracy. Although recent work try to improve the one-stage detectors by imitating the structural design of the two-stage ones, the accuracy gap is still significant. In this paper, we propose MimicDet, a novel and efficient framework to train a one-stage detector by directly mimic the two-stage features, aiming to bridge the accuracy gap between one-stage and two-stage detectors. Unlike conventional mimic methods, MimicDet has a shared backbone for one-stage and two-stage detectors, then it branches into two heads which are well designed to have compatible features for mimicking. Thus MimicDet can be end-to-end trained without the pre-train of the teacher network. And the cost does not increase much, which makes it practical to adopt large networks as backbones. We also make several specialized designs such as dual-path mimicking and staggered feature pyramid to facilitate the mimicking process. Experiments on the challenging COCO detection benchmark demonstrate the effectiveness of MimicDet. It achieves 46.1 mAP with ResNeXt-101 backbone on the COCO test-dev set, which significantly surpasses current state-of-the-art methods.

قيم البحث

اقرأ أيضاً

150 - Aixi Zhang , Yue Liao , Si Liu 2021
Two-stage methods have dominated Human-Object Interaction (HOI) detection for several years. Recently, one-stage HOI detection methods have become popular. In this paper, we aim to explore the essential pros and cons of two-stage and one-stage method s. With this as the goal, we find that conventional two-stage methods mainly suffer from positioning positive interactive human-object pairs, while one-stage methods are challenging to make an appropriate trade-off on multi-task learning, i.e., object detection, and interaction classification. Therefore, a core problem is how to take the essence and discard the dregs from the conventional two types of methods. To this end, we propose a novel one-stage framework with disentangling human-object detection and interaction classification in a cascade manner. In detail, we first design a human-object pair generator based on a state-of-the-art one-stage HOI detector by removing the interaction classification module or head and then design a relatively isolated interaction classifier to classify each human-object pair. Two cascade decoders in our proposed framework can focus on one specific task, detection or interaction classification. In terms of the specific implementation, we adopt a transformer-based HOI detector as our base model. The newly introduced disentangling paradigm outperforms existing methods by a large margin, with a significant relative mAP gain of 9.32% on HICO-Det.
One-stage object detection is commonly implemented by optimizing two sub-tasks: object classification and localization, using heads with two parallel branches, which might lead to a certain level of spatial misalignment in predictions between the two tasks. In this work, we propose a Task-aligned One-stage Object Detection (TOOD) that explicitly aligns the two tasks in a learning-based manner. First, we design a novel Task-aligned Head (T-Head) which offers a better balance between learning task-interactive and task-specific features, as well as a greater flexibility to learn the alignment via a task-aligned predictor. Second, we propose Task Alignment Learning (TAL) to explicitly pull closer (or even unify) the optimal anchors for the two tasks during training via a designed sample assignment scheme and a task-aligned loss. Extensive experiments are conducted on MS-COCO, where TOOD achieves a 51.1 AP at single-model single-scale testing. This surpasses the recent one-stage detectors by a large margin, such as ATSS (47.7 AP), GFL (48.2 AP), and PAA (49.0 AP), with fewer parameters and FLOPs. Qualitative results also demonstrate the effectiveness of TOOD for better aligning the tasks of object classification and localization. Code is available at https://github.com/fcjian/TOOD.
141 - Yang Yang , Min Li , Bo Meng 2021
One-stage object detectors rely on a point feature to predict the detection results. However, the point feature often lacks the information of the whole object, thereby leading to a misalignment between the object and the point feature. Meanwhile, th e classification and regression tasks are sensitive to different object regions, but their features are spatially aligned. Both of these two problems hinder the detection performance. In order to solve these two problems, we propose a simple and plug-in operator that can generate aligned and disentangled features for each task, respectively, without breaking the fully convolutional manner. By predicting two task-aware point sets that are located in each sensitive region, the proposed operator can align the point feature with the object and disentangle the two tasks from the spatial dimension. We also reveal an interesting finding of the opposite effect of the long-range skip connection for classification and regression. On the basis of the Object-Aligned and Task-disentangled operator (OAT), we propose OAT-Net, which explicitly exploits point-set features for accurate detection results. Extensive experiments on the MS-COCO dataset show that OAT can consistently boost different state-of-the-art one-stage detectors by $sim$2 AP. Notably, OAT-Net with Res2Net-101-DCN backbone achieves 53.7 AP on the COCO test-dev.
One-stage object detectors are trained by optimizing classification-loss and localization-loss simultaneously, with the former suffering much from extreme foreground-background class imbalance issue due to the large number of anchors. This paper alle viates this issue by proposing a novel framework to replace the classification task in one-stage detectors with a ranking task, and adopting the Average-Precision loss (AP-loss) for the ranking problem. Due to its non-differentiability and non-convexity, the AP-loss cannot be optimized directly. For this purpose, we develop a novel optimization algorithm, which seamlessly combines the error-driven update scheme in perceptron learning and backpropagation algorithm in deep networks. We verify good convergence property of the proposed algorithm theoretically and empirically. Experimental results demonstrate notable performance improvement in state-of-the-art one-stage detectors based on AP-loss over different kinds of classification-losses on various benchmarks, without changing the network architectures. Code is available at https://github.com/cccorn/AP-loss.
Monocular 3D object detection is an important task for autonomous driving considering its advantage of low cost. It is much more challenging than conventional 2D cases due to its inherent ill-posed property, which is mainly reflected in the lack of d epth information. Recent progress on 2D detection offers opportunities to better solving this problem. However, it is non-trivial to make a general adapted 2D detector work in this 3D task. In this paper, we study this problem with a practice built on a fully convolutional single-stage detector and propose a general framework FCOS3D. Specifically, we first transform the commonly defined 7-DoF 3D targets to the image domain and decouple them as 2D and 3D attributes. Then the objects are distributed to different feature levels with consideration of their 2D scales and assigned only according to the projected 3D-center for the training procedure. Furthermore, the center-ness is redefined with a 2D Gaussian distribution based on the 3D-center to fit the 3D target formulation. All of these make this framework simple yet effective, getting rid of any 2D detection or 2D-3D correspondence priors. Our solution achieves 1st place out of all the vision-only methods in the nuScenes 3D detection challenge of NeurIPS 2020. Code and models are released at https://github.com/open-mmlab/mmdetection3d.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا