ﻻ يوجد ملخص باللغة العربية
Training object detectors with only image-level annotations is very challenging because the target objects are often surrounded by a large number of background clutters. Many existing approaches tackle this problem through object proposal mining. However, the collected positive regions are either low in precision or lack of diversity, and the strategy of collecting negative regions is not carefully designed, neither. Moreover, training is often slow because region selection and object detector training are processed separately. In this context, the primary contribution of this work is to improve weakly supervised detection with an optimized region selection strategy. The proposed method collects purified positive training regions by progressively removing easy background clutters, and selects discriminative negative regions by mining class-specific hard samples. This region selection procedure is further integrated into a CNN-based weakly supervised detection (WSD) framework, and can be performed in each stochastic gradient descent mini-batch during training. Therefore, the entire model can be trained end-to-end efficiently. Extensive evaluation results on PASCAL VOC 2007, VOC 2010 and VOC 2012 datasets are presented which demonstrate that the proposed method effectively improves WSD.
Significant performance improvement has been achieved for fully-supervised video salient object detection with the pixel-wise labeled training datasets, which are time-consuming and expensive to obtain. To relieve the burden of data annotation, we pr
Localizing objects with weak supervision in an image is a key problem of the research in computer vision community. Many existing Weakly-Supervised Object Localization (WSOL) approaches tackle this problem by estimating the most discriminative region
Weakly Supervised Object Detection (WSOD) has emerged as an effective tool to train object detectors using only the image-level category labels. However, without object-level labels, WSOD detectors are prone to detect bounding boxes on salient object
Based on the framework of multiple instance learning (MIL), tremendous works have promoted the advances of weakly supervised object detection (WSOD). However, most MIL-based methods tend to localize instances to their discriminative parts instead of
Weakly-Supervised Object Detection (WSOD) and Localization (WSOL), i.e., detecting multiple and single instances with bounding boxes in an image using image-level labels, are long-standing and challenging tasks in the CV community. With the success o