ﻻ يوجد ملخص باللغة العربية
Although cuprate superconductors have been intensively studied for the past decades, there is no consensus regarding the microscopic origin of their superconductivity. In this work, we measure the low-energy electrodynamic response of slightly underdoped and overdoped La$_{2-x}$Ce$_x$CuO$_4$ thin films using time-domain terahertz (THz) spectroscopy to determine the temperature and field dependence of the superfluid spectral weight. We show that the temperature dependence obeys the relation textit{n$_s$} $propto$ $1-(T/T_c)^2$, typical for dirty limit BCS-like $d$-wave superconductors. Furthermore, the magnetic field dependence was found to follow a sublinear $sqrt{B}$ form, which supports predictions based on a $d$-wave symmetry for the superconducting gap. These observations imply that the superconducting order in these electron-doped cuprates can be well described in terms of a disordered BCS $d$-wave formalism.
We propose a weakly coupled two-band model with $d_{x^2-y^2}$ pairing symmetry to account for the anomalous temperature dependence of superfluid density $rho_s$ in electron-doped cuprate superconductors. This model gives a unified explanation to the
The angle-resolved photoemission spectroscopy (ARPES) autocorrelation in the electron-doped cuprate superconductors is studied based on the kinetic-energy driven superconducting (SC) mechanism. It is shown that the strong electron correlation induces
We report microwave cavity perturbation measurements of the temperature dependence of the penetration depth, lambda(T), and conductivity, sigma(T) of Pr_{2-x}Ce_{x}CuO_{4-delta} (PCCO) crystals, as well as parallel-plate resonator measurements of lam
The recent experiments revealed a remarkable possibility for the absence of the disparity between the phase diagrams of the electron- and hole-doped cuprate superconductors, while such an aspect should be also reflected in the dressing of the electro
We measured the magnetoresistance as a function of temperature down to 20mK and magnetic field for a set of underdoped PrCeCuO (x=0.12) thin films with controlled oxygen content. This allows us to access the edge of the superconducting dome on the un