ﻻ يوجد ملخص باللغة العربية
We propose a weakly coupled two-band model with $d_{x^2-y^2}$ pairing symmetry to account for the anomalous temperature dependence of superfluid density $rho_s$ in electron-doped cuprate superconductors. This model gives a unified explanation to the presence of a upward curvature in $rho_s$ near $T_c$ and a weak temperature dependence of $rho_s$ in low temperatures. Our work resolves a discrepancy in the interpretation of different experimental measurements and suggests that the pairing in electron-doped cuprates has predominately $d_{x^2-y^2}$ symmetry in the whole doping range.
The angle-resolved photoemission spectroscopy (ARPES) autocorrelation in the electron-doped cuprate superconductors is studied based on the kinetic-energy driven superconducting (SC) mechanism. It is shown that the strong electron correlation induces
We report microwave cavity perturbation measurements of the temperature dependence of the penetration depth, lambda(T), and conductivity, sigma(T) of Pr_{2-x}Ce_{x}CuO_{4-delta} (PCCO) crystals, as well as parallel-plate resonator measurements of lam
Although cuprate superconductors have been intensively studied for the past decades, there is no consensus regarding the microscopic origin of their superconductivity. In this work, we measure the low-energy electrodynamic response of slightly underd
The recent experiments revealed a remarkable possibility for the absence of the disparity between the phase diagrams of the electron- and hole-doped cuprate superconductors, while such an aspect should be also reflected in the dressing of the electro
Superconductivity research is like running a marathon. Three decades after the discovery of high-Tc cuprates, there have been mass data generated from transport measurements, which bring fruitful information. In this review, we give a brief summary o