ترغب بنشر مسار تعليمي؟ اضغط هنا

On the resistivity at low temperatures in electron-doped cuprate superconductors

196   0   0.0 ( 0 )
 نشر من قبل Yoram Dagan
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We measured the magnetoresistance as a function of temperature down to 20mK and magnetic field for a set of underdoped PrCeCuO (x=0.12) thin films with controlled oxygen content. This allows us to access the edge of the superconducting dome on the underdoped side. The sheet resistance increases with increasing oxygen content whereas the superconducting transition temperature is steadily decreasing down to zero. Upon applying various magnetic fields to suppress superconductivity we found that the sheet resistance increases when the temperature is lowered. It saturates at very low temperatures. These results, along with the magnetoresistance, cannot be described in the context of zero temperature two dimensional superconductor-to-insulator transition nor as a simple Kondo effect due to scattering off spins in the copper-oxide planes. We conjecture that due to the proximity to an antiferromagnetic phase magnetic droplets are induced. This results in negative magnetoresistance and in an upturn in the resistivity.

قيم البحث

اقرأ أيضاً

We report microwave cavity perturbation measurements of the temperature dependence of the penetration depth, lambda(T), and conductivity, sigma(T) of Pr_{2-x}Ce_{x}CuO_{4-delta} (PCCO) crystals, as well as parallel-plate resonator measurements of lam bda(T) in PCCO thin films. Penetration depth measurements are also presented for a Nd_{2-x}Ce_{x}CuO_{4-delta} (NCCO) crystal. We find that delta-lambda(T) has a power-law behavior for T<T_c/3, and conclude that the electron-doped cuprate superconductors have nodes in the superconducting gap. Furthermore, using the surface impedance, we have derived the real part of the conductivity, sigma_1(T), below T_c and found a behavior similar to that observed in hole-doped cuprates.
305 - Xu Zhang , Heshan Yu , Ge He 2016
Superconductivity research is like running a marathon. Three decades after the discovery of high-Tc cuprates, there have been mass data generated from transport measurements, which bring fruitful information. In this review, we give a brief summary o f the intriguing phenomena reported in electron-doped cuprates from the aspect of electrical transport as well as the complementary thermal transport. We attempt to sort out common features of the electron-doped family, e.g. the strange metal, negative magnetoresistance, multiple sign reversals of Hall in mixed state, abnormal Nernst signal, complex quantum criticality. Most of them have been challenging the existing theories, nevertheless, a unified diagram certainly helps to approach the nature of electron-doped cuprates.
High temperature cuprate superconductors consist of stacked CuO2 planes, with primarily two dimensional electronic band structures and magnetic excitations, while superconducting coherence is three dimensional. This dichotomy highlights the importanc e of out-of-plane charge dynamics, believed to be incoherent in the normal state, yet lacking a comprehensive characterization in energy-momentum space. Here, we use resonant inelastic x-ray scattering (RIXS) with polarization analysis to uncover the pure charge character of a recently discovered collective mode in electron-doped cuprates. This mode disperses along both the in- and, importantly, out-of-plane directions, revealing its three dimensional nature. The periodicity of the out-of-plane dispersion corresponds to the CuO2 plane distance rather than the crystallographic c-axis lattice constant, suggesting that the interplane Coulomb interaction drives the coherent out-of-plane charge dynamics. The observed properties are hallmarks of the long-sought acoustic plasmon, predicted for layered systems and argued to play a substantial role in mediating high temperature superconductivity.
High-temperature superconductivity (HTSC) mysteriously emerges upon doping holes or electrons into insulating copper oxides with antiferromagnetic (AFM) order. It has been thought that the large energy scale of magnetic excitations, compared to phono n energies for example, lies at the heart of an electronically-driven superconducting phase at high temperatures. However, despite extensive studies, little information is available for comparison of high-energy magnetic excitations of hole- and electron-doped superconductors to assess a possible correlation with the respective superconducting transition temperatures. Here, we use resonant inelastic x-ray scattering (RIXS) at the Cu L3-edge to reveal high-energy collective excitations in the archetype electron-doped cuprate Nd2-xCexCuO4 (NCCO). Surprisingly, despite the fact that the spin stiffness is zero and the AFM correlations are short-ranged, magnetic excitations harden significantly across the AFM-HTSC phase boundary, in stark contrast with the hole-doped cuprates. Furthermore, we find an unexpected and highly dispersive mode in superconducting NCCO that is undetected in the hole-doped compounds, which emanates from the zone center with a characteristic energy comparable to the pseudogap, and may signal a quantum phase distinct from superconductivity. The uncovered asymmetry in the high-energy collective excitations with respect to hole and electron doping provides additional constraints for modeling the HTSC cuprates.
The angle-resolved photoemission spectroscopy (ARPES) autocorrelation in the electron-doped cuprate superconductors is studied based on the kinetic-energy driven superconducting (SC) mechanism. It is shown that the strong electron correlation induces the electron Fermi surface (EFS) reconstruction, where the most of the quasiparticles locate at around the hot spots on EFS, and then these hot spots connected by the scattering wave vectors ${bf q}_{i}$ construct an {it octet} scattering model. In a striking analogy to the hole-doped case, the sharp ARPES autocorrelation peaks are directly correlated with the scattering wave vectors ${bf q}_{i}$, and are weakly dispersive in momentum space. However, in a clear contrast to the hole-doped counterparts, the position of the ARPES autocorrelation peaks move toward to the opposite direction with the increase of doping. The theory also indicates that there is an intrinsic connection between the ARPES autocorrelation and quasiparticle scattering interference (QSI) in the electron-doped cuprate superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا