ﻻ يوجد ملخص باللغة العربية
Medium-scale or large-scale receive antenna array with digital beamforming can be employed at receiver to make a significant interference reduction, but leads to expensive cost and high complexity of the RF-chain circuit. To deal with this issue, a classic analog-and-digital beamforming (ADB) structure was proposed in the literature for greatly reducing the number of RF-chains. Based on the ADB structure, we in this paper propose a robust hybrid ADB scheme to resist directions of arrival (DOAs) estimation errors. The key idea of our scheme is to employ null space projection (NSP) in analog beamforming domain and diagonal loading (DL) method in digital beamforming domain. Simulation results show that the proposed scheme performs more robustly, and moreover, has a significant improvement on the receive signal to interference plus noise ratio (SINR) compared to NSP ADB scheme and DL method.
A large-scale fully-digital receive antenna array can provide very high-resolution direction of arrival (DOA) estimation, but resulting in a significantly high RF-chain circuit cost. Thus, a hybrid analog and digital (HAD) structure is preferred. Two
A simple method is proposed for use in a scenario involving a single-antenna source node communicating with a destination node that is equipped with two antennas via multiple single-antenna relay nodes, where each relay is subject to an individual po
We propose, analyze and demonstrate an architecture for scalable cooperative reception. In a cluster of N + 1 receive nodes, one node is designated as the final receiver, and the N other nodes act as amplify-and-forward relays which adapt their phase
In this paper, we present a novel scenario for directional modulation (DM) networks with a full-duplex (FD) malicious attacker (Mallory), where Mallory can eavesdrop the confidential message from Alice to Bob and simultaneously interfere Bob by sendi
In this paper, we make an investigation of receive antenna selection (RAS) strategies in the secure pre-coding aided spatial modulation (PSM) system with the aid of artificial noise. Due to a lack of the closed-form expression for secrecy rate (SR) i