ﻻ يوجد ملخص باللغة العربية
Tantalum diselenide (TaSe$_{2}$) is a metallic transition metal dichalcogenide whose equilibrium structure and vibrational behavior strongly depends on temperature and thickness, including the emergence of charge density wave (CDW) states at very low T. In this work, observed modes for mono- and bi-layer are described across several spectral regions and com-pared to the bulk ones. Such modes, including an experimentally observed forbidden Raman mode and low frequency CDW modes, are then matched to corresponding density functional theory (DFT) predicted vibrations, to unveil their inner working. The excellent match between experimental and computational results justifies the presented vibrational visualizations of these modes. Additional support is provided by experimental phonons seen in Raman spectra as a function of temperature and thickness. These results highlight the importance of understanding interlayer interactions and their effects on mode behaviors.
Metallic transition metal dichalcogenides like tantalum diselenide (TaSe$_{2}$) exhibit exciting behaviors at low temperatures, including the emergence of charge density wave (CDW) states. In this work, density functional theory (DFT) is used to inve
We study the second-order Raman process of mono- and few-layer MoTe$_2$, by combining {em ab initio} density functional perturbation calculations with experimental Raman spectroscopy using 532, 633 and 785 nm excitation lasers. The calculated electro
We investigated interlayer phonon modes of mechanically exfoliated few-layer 2H-SnS2 samples by using room temperature low-frequency micro-Raman spectroscopy. Raman measurements were performed using laser wavelength of 441.6, 514.4, 532 and 632.8 nm
Two-dimensional crystals of semimetallic van der Waals materials hold much potential for the realization of novel phases, as exemplified by the recent discoveries of a polar metal in few layer 1T-WTe$_2$ and of a quantum spin Hall state in monolayers
Charge-density-waves (CDW) which occur mainly in low-dimensional systems have a macroscopic wave function similar to superfluids and superconductors. Kosterlitz-Thouless (KT) transition is observed in superfluids and superconductors, but the presence