ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-Frequency Raman Spectroscopy of Few-Layer 2H-SnS2

234   0   0.0 ( 0 )
 نشر من قبل Tharith Sriv
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigated interlayer phonon modes of mechanically exfoliated few-layer 2H-SnS2 samples by using room temperature low-frequency micro-Raman spectroscopy. Raman measurements were performed using laser wavelength of 441.6, 514.4, 532 and 632.8 nm with power below 100 uW and inside a vacuum chamber to avoid photo-oxidation. The intralayer Eg and A1g modes are observed at ~206 cm-1 and ~314 cm-1, respectively, but the Eg mode is much weaker for all excitation energies. The A1g mode exhibits strong resonant enhancement for the 532 nm (2.33 eV) laser. In the low-frequency region, interlayer vibrational modes of shear and breathing modes are observed. These modes show characteristic dependence on the number of layers. The strengths of the interlayer interactions are estimated by fitting the interlayer mode frequencies using the linear chain model and are found to be 1.64 x10^19 N.m-3 and 5.03 x10^19 N.m-3 for the shear and breathing modes, respectively.



قيم البحث

اقرأ أيضاً

We study the second-order Raman process of mono- and few-layer MoTe$_2$, by combining {em ab initio} density functional perturbation calculations with experimental Raman spectroscopy using 532, 633 and 785 nm excitation lasers. The calculated electro nic band structure and the density of states show that the electron-photon resonance process occurs at the high-symmetry M point in the Brillouin zone, where a strong optical absorption occurs by a logarithmic Van-Hove singularity. Double resonance Raman scattering with inter-valley electron-phonon coupling connects two of the three inequivalent M points in the Brillouin zone, giving rise to second-order Raman peaks due to the M point phonons. The predicted frequencies of the second-order Raman peaks agree with the observed peak positions that cannot be assigned in terms of a first-order process. Our study attempts to supply a basic understanding of the second-order Raman process occurring in transition metal di-chalcogenides (TMDs) and may provide additional information both on the lattice dynamics and optical processes especially for TMDs with small energy band gaps such as MoTe$_2$ or at high laser excitation energy.
We report two new first-order Raman modes in the spectra of few-layer MoS$_2$ at 286~cm$^{-1}$ and 471~cm$^{-1}$ for excitation energies above 2.4~eV. These modes appear only in few-layer MoS$_2$; therefore their absence provides an easy and accurate method to identify single-layer MoS$_2$. We show that these modes are related to phonons that are not observed in the single layer due to their symmetry. Each of these phonons leads to several nearly degenerate phonons in few-layer samples. The nearly degenerate phonons in few-layer materials belong to two different symmetry representations, showing opposite behavior under inversion or horizontal reflection. As a result, Raman active phonons exist in few-layer materials that have nearly the same frequency as the symmetry forbidden phonon of the single layer. We provide here a general treatment of this effect for all few-layer two-dimensional crystal structures with an inversion center or a mirror plane parallel to the layers. We show that always nearly degenerate phonon modes of different symmetry must occur and, as a result, similar pseudo-activation effects can be excepted.
Tantalum diselenide (TaSe$_{2}$) is a metallic transition metal dichalcogenide whose equilibrium structure and vibrational behavior strongly depends on temperature and thickness, including the emergence of charge density wave (CDW) states at very low T. In this work, observed modes for mono- and bi-layer are described across several spectral regions and com-pared to the bulk ones. Such modes, including an experimentally observed forbidden Raman mode and low frequency CDW modes, are then matched to corresponding density functional theory (DFT) predicted vibrations, to unveil their inner working. The excellent match between experimental and computational results justifies the presented vibrational visualizations of these modes. Additional support is provided by experimental phonons seen in Raman spectra as a function of temperature and thickness. These results highlight the importance of understanding interlayer interactions and their effects on mode behaviors.
245 - Zefei Wu , Yu Han , Wei Zhu 2014
We demonstrate that surface relaxation, which is insignificant in trilayer graphene, starts to manifest in Bernal-stacked tetralayer graphene. Bernal-stacked few-layer graphene has been investigated by analyzing its Landau level spectra through quant um capacitance measurements. We find that in trilayer graphene, the interlayer interaction parameters were similar to that of graphite. However, in tetralayer graphene, the hopping parameters between the bulk and surface bilayers are quite different. This shows a direct evidence for the surface relaxation phenomena. In spite of the fact that the Van der Waals interaction between the carbon layers is thought to be insignificant, we suggest that the interlayer interaction is an important factor in explaining the observed results and the symmetry-breaking effects in graphene sublattice are not negligible.
The Raman selection rules arise from the crystal symmetry and then determine the Raman activity and polarization of scattered phonon modes. However, these selection rules can be broken in resonant process due to the strong electron-phonon coupling ef fect. Here we reported the observation of breakdown of Raman selection rules in few-layer WS$_2$ by using resonant Raman scattering with dark A exciton. In this case, not only the infrared active modes and backscattering forbidden modes are observed, but the intensities of all observed phonon modes become strongest under paralleled-polarization and independent on the Raman tensors of phonons. We attributed this phenomenon to the interaction between dark A exciton and the scatted phonon, the so-called intraband Fr{o}hlich interaction, where the Raman scattering possibility is totally determined by the symmetry of exciton rather than the phonons due to strong electron-phonon coupling. Our results not only can be used to easily detect the optical forbidden excitonic and phononic states but also provide a possible way to manipulate optical transitions between electronic levels.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا