ﻻ يوجد ملخص باللغة العربية
Metallic transition metal dichalcogenides like tantalum diselenide (TaSe$_{2}$) exhibit exciting behaviors at low temperatures, including the emergence of charge density wave (CDW) states. In this work, density functional theory (DFT) is used to investigate how structural, electronic, and Raman spectral properties of the CDW configuration change as a function of thickness. Such findings highlight the influence of dimensionality change (from 2D to 3D) and van der Waals (vdW) interactions on the system properties. The vdW effect is most strongly present in bulk TaSe$_{2}$ in the spectral range 165 cm$^{-1}$ to 215 cm$^{-1}$. The phonons seen in the experimental Raman spectra are compared with the results calculated from the DFT models as a function of temperature and layer number. The matching of data and calculations substantiates the models description of the CDW structural formation as a function of thickness, which is shown in depth for 1L through 6L systems. These results highlight the importance of understanding interlayer interactions, which are pervasive in many quantum phenomena involving two-dimensional confinement.
Two-dimensional (2D) materials have become a fertile playground for the exploration and manipulation of novel collective electronic states. Recent experiments have unveiled a variety of robust 2D orders in highly-crystalline materials ranging from ma
Tantalum diselenide (TaSe$_{2}$) is a metallic transition metal dichalcogenide whose equilibrium structure and vibrational behavior strongly depends on temperature and thickness, including the emergence of charge density wave (CDW) states at very low
We investigate carrier and collective mode dynamics in 2H-NbSe$_2$ using time-resolved optical pump-probe spectroscopy and compare the results with first-principle calculations. Broadband ultrafast reflectivity studies of 2H-NbSe$_2$ in a wide temper
2$H$-TaSe$_2$ has been one of unique transition metal dichalcogenides exhibiting several phase transitions due to a delicate balance among competing electronic ground states. An unusual metallic state at high-$T$ is sequentially followed by an incomm
The temperature dependence of the phonon spectrum in the superconducting transition metal dichalcogenide 2H-NbS$_2$ is measured by diffuse and inelastic x-ray scattering. A deep, wide and strongly temperature dependent softening, of the two lowest en