ﻻ يوجد ملخص باللغة العربية
The groups whose orders factorise into at most four primes have been described (up to isomorphism) in various papers. Given such an order n, this paper exhibits a new explicit and compact determination of the isomorphism types of the groups of order n together with effective algorithms to enumerate, construct, and identify these groups. The algorithms are implemented for the computer algebra system GAP.
Let $N(n)$ denote the number of isomorphism types of groups of order $n$. We consider the integers $n$ that are products of at most $4$ not necessarily distinct primes and exhibit formulas for $N(n)$ for such $n$.
A regular left-order on finitely generated group $G$ is a total, left-multiplication invariant order on $G$ whose corresponding positive cone is the image of a regular language over the generating set of the group under the evaluation map. We show th
We prove that a group homomorphism $varphicolon Lto G$ from a locally compact Hausdorff group $L$ into a discrete group $G$ either is continuous, or there exists a normal open subgroup $Nsubseteq L$ such that $varphi(N)$ is a torsion group provided t
A graph is split if there is a partition of its vertex set into a clique and an independent set. The present paper is devoted to the splitness of some graphs related to finite simple groups, namely, prime graphs and solvable graphs, and their compact
Recent results of Qu and Tuarnauceanu describe explicitly the finite p-groups which are not elementary abelian and have the property that the number of their subgroups is maximal among p-groups of a given order. We complement these results from the b