ﻻ يوجد ملخص باللغة العربية
A graph is split if there is a partition of its vertex set into a clique and an independent set. The present paper is devoted to the splitness of some graphs related to finite simple groups, namely, prime graphs and solvable graphs, and their compact forms. It is proved that the compact form of the prime graph of any finite simple group is split.
We construct locally compact groups with no non-trivial Invariant Random Subgroups and no non-trivial Uniformly Recurrent Subgroups.
Recent results of Qu and Tuarnauceanu describe explicitly the finite p-groups which are not elementary abelian and have the property that the number of their subgroups is maximal among p-groups of a given order. We complement these results from the b
We generalize the notion of a graph automatic group introduced by Kharlampovich, Khoussainov and Miasnikov (arXiv:1107.3645) by replacing the regular languages in their definition with more powerful language classes. For a fixed language class $mathc
We show that if $G$ is a group and $G$ has a graph-product decomposition with finitely-generated abelian vertex groups, then $G$ has two canonical decompositions as a graph product of groups: a unique decomposition in which each vertex group is a dir
We show that the higher rank lamplighter groups, or Diestel-Leader groups $Gamma_d(q)$ for $d geq 3$, are graph automatic. This introduces a new family of graph automatic groups which are not automatic.