ﻻ يوجد ملخص باللغة العربية
A regular left-order on finitely generated group $G$ is a total, left-multiplication invariant order on $G$ whose corresponding positive cone is the image of a regular language over the generating set of the group under the evaluation map. We show that admitting regular left-orders is stable under extensions and wreath products and give a classification of the groups all whose left-orders are regular left-orders. In addition, we prove that solvable Baumslag-Solitar groups $B(1,n)$ admits a regular left-order if and only if $ngeq -1$. Finally, Hermiller and Sunic showed that no free product admits a regular left-order, however we show that if $A$ and $B$ are groups with regular left-orders, then $(A*B)times mathbb{Z}$ admits a regular left-order.
We study left orderable groups by using dynamical methods. We apply these techniques to study the space of orderings of these groups. We show for instance that for the case of (non-Abelian) free groups, this space is homeomorphic to the Cantor set. W
Let G be a regular Lie group which is a directed union of regular Lie groups G_i (all modelled on possibly infinite-dimensional, locally convex spaces). We show that G is the direct limit of the G_i as a regular Lie group whenever G admits a so-calle
Let $G$ be a group and let $xin G$ be a left $3$-Engel element of order dividing $60$. Suppose furthermore that $langle xrangle^{G}$ has no elements of order $8$, $9$ and $25$. We show that $x$ is then contained in the locally nilpotent radical of $G
The groups whose orders factorise into at most four primes have been described (up to isomorphism) in various papers. Given such an order n, this paper exhibits a new explicit and compact determination of the isomorphism types of the groups of order
We study reductive subgroups $H$ of a reductive linear algebraic group $G$ -- possibly non-connected -- such that $H$ contains a regular unipotent element of $G$. We show that under suitable hypotheses, such subgroups are $G$-irreducible in the sense