ﻻ يوجد ملخص باللغة العربية
The competition between the indirect exchange interaction (IEC) of magnetic impurities in metals and the Kondo effect gives rise to a rich quantum phase diagram, the Doniach Diagram. In disordered metals, both the Kondo temperature and the IEC are widely distributed due to the scattering of the conduction electrons from the impurity potential. Therefore, it is a question of fundamental importance, how this Doniach diagram is modified by the disorder, and if one can still identify separate phases. Recently, it has been investigated the effect of Ruderman-Kittel-Kasuya-Yosida (RKKY) correlations on the Kondo effect of two magnetic impurities, renormalizing the Kondo interaction based on the Bethe-Salpeter equation and performing the poor mens renormalization group (RG) analysis with the RKKY-renormalized Kondo coupling. In the present study, we extend this theoretical framework, allowing for different Kondo temperatures of two RKKY-coupled magnetic impurities due to different local exchange couplings and density of states. As a result, we find that the smaller one of the two Kondo temperatures is suppressed more strongly by the RKKY interaction, thereby enhancing their initial inequality. In order to find out if this relevance of inequalities between Kondo temperatures modifies the distribution of the Kondo temperature in a system of a finite density of randomly distributed magnetic impurities, we present an extension of the RKKY coupled Kondo RG equations. We discuss the implication of these results for the interplay between Kondo coupling and RKKY interaction in disordered electron systems and the Doniach diagram in disordered electron systems.
In a Kondo lattice, the spin exchange coupling between a local spin and the conduction electrons acquires nonlocal contributions due to conduction electron scattering from surrounding local spins and the subsequent RKKY interaction. It leads to a hit
We apply our recently developed, selfconsistent renormalization group (RG) method to STM spectra of a two-impurity Kondo system consisting of two cobalt atoms connected by a one-dimensional Cu chain on a Cu surface. This RG method was developed to de
We show that the paradigmatic Ruderman-Kittel-Kasuya-Yosida (RKKY) description of two local magnetic moments coupled to propagating electrons breaks down in helical Luttinger Liquids when the electron interaction is stronger than some critical value.
We study the impurity entanglement entropy $S_e$ in quantum impurity models that feature a Kondo-destruction quantum critical point (QCP) arising from a pseudogap in the conduction-band density of states or from coupling to a bosonic bath. On the loc
The cooperative behavior of quantum impurities on 2D materials, such as graphene and bilayer graphene, is characterized by a non-trivial competition between screening (Kondo effect), and Ruderman-Kittel-Kasuya-Yosida (RKKY) magnetism. In addition, du