ﻻ يوجد ملخص باللغة العربية
A new recurrence relation for exceptional orthogonal polynomials is proposed, which holds for type 1, 2 and 3. As concrete examples, the recurrence relations are given for Xj-Hermite, Laguerre and Jacobi polynomials in j = 1,2 case.
It is pointed out that, for the fractional Fokker-Planck equation for subdiffusion proposed by Metzler, Barkai, and Klafter [Phys. Rev. Lett. 82 (1999) 3563], there are four types of infinitely many exact solutions associated with the newly discovere
Let $p_n(x)$, $n=0,1,dots$, be the orthogonal polynomials with respect to a given density $dmu(x)$. Furthermore, let $d u(x)$ be a density which arises from $dmu(x)$ by multiplication by a rational function in $x$. We prove a formula that expresses t
The Cholesky factorization of the moment matrix is applied to discrete orthogonal polynomials on the homogeneous lattice. In particular, semiclassical discrete orthogonal polynomials, which are built in terms of a discrete Pearson equation, are studi
We consider a set of measures on the real line and the corresponding system of multiple orthogonal polynomials (MOPs) of the first and second type. Under some very mild assumptions, which are satisfied by Angelesco systems, we define self-adjoint Jac
In this paper we present a general scheme for how to relate differential equations for the recurrence coefficients of semi-classical orthogonal polynomials to the Painleve equations using the geometric framework of Okamotos space of initial values. W