ترغب بنشر مسار تعليمي؟ اضغط هنا

Unsupervised embedding of trajectories captures the latent structure of mobility

76   0   0.0 ( 0 )
 نشر من قبل Dakota Murray
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Human mobility drives major societal phenomena including epidemics, economies, and innovation. Historically, mobility was constrained by geographic distance, however, in the globalizing world, language, culture, and history are increasingly important. We propose using the neural embedding model word2vec for studying mobility and capturing its complexity. Word2ec is shown to be mathematically equivalent to the gravity model of mobility, and using three human trajectory datasets, we demonstrate that it encodes nuanced relationships between locations into a vector-space, providing a measure of effective distance that outperforms baselines. Focusing on the case of scientific mobility, we show that embeddings uncover cultural, linguistic, and hierarchical relationships at multiple levels of granularity. Connecting neural embeddings to the gravity model opens up new avenues for the study of mobility.

قيم البحث

اقرأ أيضاً

66 - Ruian Shi , Quaid Morris 2021
Smooth dynamics interrupted by discontinuities are known as hybrid systems and arise commonly in nature. Latent ODEs allow for powerful representation of irregularly sampled time series but are not designed to capture trajectories arising from hybrid systems. Here, we propose the Latent Segmented ODE (LatSegODE), which uses Latent ODEs to perform reconstruction and changepoint detection within hybrid trajectories featuring jump discontinuities and switching dynamical modes. Where it is possible to train a Latent ODE on the smooth dynamical flows between discontinuities, we apply the pruned exact linear time (PELT) algorithm to detect changepoints where latent dynamics restart, thereby maximizing the joint probability of a piece-wise continuous latent dynamical representation. We propose usage of the marginal likelihood as a score function for PELT, circumventing the need for model complexity-based penalization. The LatSegODE outperforms baselines in reconstructive and segmentation tasks including synthetic data sets of sine waves, Lotka Volterra dynamics, and UCI Character Trajectories.
Considering the wide application of network embedding methods in graph data mining, inspired by the adversarial attack in deep learning, this paper proposes a Genetic Algorithm (GA) based Euclidean Distance Attack strategy (EDA) to attack the network embedding, so as to prevent certain structural information from being discovered. EDA focuses on disturbing the Euclidean distance between a pair of nodes in the embedding space as much as possible through minimal modifications of the network structure. Since a large number of downstream network algorithms, such as community detection and node classification, rely on the Euclidean distance between nodes to evaluate the similarity between them in the embedding space, EDA can be considered as a universal attack on a variety of network algorithms. Different from traditional supervised attack strategies, EDA does not need labeling information, and, in other words, is an unsupervised network embedding attack method.
Gradient-based meta-learning techniques are both widely applicable and proficient at solving challenging few-shot learning and fast adaptation problems. However, they have practical difficulties when operating on high-dimensional parameter spaces in extreme low-data regimes. We show that it is possible to bypass these limitations by learning a data-dependent latent generative representation of model parameters, and performing gradient-based meta-learning in this low-dimensional latent space. The resulting approach, latent embedding optimization (LEO), decouples the gradient-based adaptation procedure from the underlying high-dimensional space of model parameters. Our evaluation shows that LEO can achieve state-of-the-art performance on the competitive miniImageNet and tieredImageNet few-shot classification tasks. Further analysis indicates LEO is able to capture uncertainty in the data, and can perform adaptation more effectively by optimizing in latent space.
An increasing amount of location-based service (LBS) data is being accumulated and helps to study urban dynamics and human mobility. GPS coordinates and other location indicators are normally low dimensional and only representing spatial proximity, t hus difficult to be effectively utilized by machine learning models in Geo-aware applications. Existing location embedding methods are mostly tailored for specific problems that are taken place within areas of interest. When it comes to the scale of a city or even a country, existing approaches always suffer from extensive computational cost and significant data sparsity. Different from existing studies, we propose to learn representations through a GCN-aided skip-gram model named GCN-L2V by considering both spatial connection and human mobility. With a flow graph and a spatial graph, it embeds context information into vector representations. GCN-L2V is able to capture relationships among locations and provide a better notion of similarity in a spatial environment. Across quantitative experiments and case studies, we empirically demonstrate that representations learned by GCN-L2V are effective. As far as we know, this is the first study that provides a fine-grained location embedding at the city level using only LBS records. GCN-L2V is a general-purpose embedding model with high flexibility and can be applied in down-streaming Geo-aware applications.
107 - Zelin Zang , Siyuan Li , Di Wu 2021
Unsupervised attributed graph representation learning is challenging since both structural and feature information are required to be represented in the latent space. Existing methods concentrate on learning latent representation via reconstruction t asks, but cannot directly optimize representation and are prone to oversmoothing, thus limiting the applications on downstream tasks. To alleviate these issues, we propose a novel graph embedding framework named Deep Manifold Attributed Graph Embedding (DMAGE). A node-to-node geodesic similarity is proposed to compute the inter-node similarity between the data space and the latent space and then use Bergman divergence as loss function to minimize the difference between them. We then design a new network structure with fewer aggregation to alleviate the oversmoothing problem and incorporate graph structure augmentation to improve the representations stability. Our proposed DMAGE surpasses state-of-the-art methods by a significant margin on three downstream tasks: unsupervised visualization, node clustering, and link prediction across four popular datasets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا