ﻻ يوجد ملخص باللغة العربية
The presence of chaotic transients in a nonlinear dynamo is investigated through numerical simulations of the 3D magnetohydrodynamic equations. By using the kinetic helicity of the flow as a control parameter, a hysteretic blowout bifurcation is conjectured to be responsible for the transition to dynamo, leading to a sudden increase in the magnetic energy of the attractor. This high-energy hydromagnetic attractor is suddenly destroyed in a boundary crisis when the helicity is decreased. Both the blowout bifurcation and the boundary crisis generate long chaotic transients that are due, respectively, to a chaotic saddle and a relative chaotic attractor.
Much work on turbulent three-dimensional dynamos has been done using triply periodic domains, in which there are no magnetic helicity fluxes. Here we present simulations where the turbulent intensity is still nearly homogeneous, but now there is a pe
The role of turbulence in current generation and self-excitation of magnetic fields has been studied in the geometry of a mechanically driven, spherical dynamo experiment, using a three dimensional numerical computation. A simple impeller model drive
The two-fluid (ions and electrons) plasma Richtmyer-Meshkov instability of a cylindrical light/heavy density interface is numerically investigated without an initial magnetic field. Varying the Debye length scale, we examine the effects of the coupli
A two-field model of potential vorticity (PV) staircase structure and dynamics relevant to both beta-plane and drift-wave plasma turbulence is studied numerically and analytically. The model evolves averaged PV whose flux is both driven by and regula
Electrohydrodynamic (EHD) thrust is produced when ionized fluid is accelerated in an electric field due to the momentum transfer between the charged species and neutral molecules. We extend the previously reported analytical model that couples space