ﻻ يوجد ملخص باللغة العربية
A two-field model of potential vorticity (PV) staircase structure and dynamics relevant to both beta-plane and drift-wave plasma turbulence is studied numerically and analytically. The model evolves averaged PV whose flux is both driven by and regulates, a potential enstrophy field, $varepsilon$. The model employs a closure using a mixing length model. Its link to bistability, vital to staircase generation, is analyzed and verified by integrating the equations numerically. Long-time staircase evolution consistently manifests a pattern of meta-stable quasi-periodic configurations, lasting for hundreds of time units, yet interspersed with abrupt ($Delta tll1$) mergers of adjacent steps in the staircase. The mergers occur at the staircase lattice defects where the pattern has not completely relaxed to a strictly periodic solution that can be obtained analytically. Other types of stationary solutions are solitons and kinks in the PV gradient and $varepsilon$ - profiles. The waiting time between mergers increases strongly as the number of steps in the staircase decreases. This is because of an exponential decrease in inter-step coupling strength with growing spacing. The long-time staircase dynamics is shown numerically be determined by local interaction with adjacent steps. Mergers reveal themselves through the explosive growth of the turbulent PV-flux which, however, abruptly drops to its global constant value once the merger is completed.
Using a one-layer QG model, we study the effect of random monoscale topography on forced beta-plane turbulence. The forcing is a uniform steady wind stress that produces both a uniform large-scale zonal flow $U(t)$ and smaller-scale macroturbulence (
Exact solutions of a magnetized plasma in a vorticity containing shear flow for constant temperature are presented. This is followed by the modification of these solutions by thermomagnetic currents in the presence of temperature gradients. It is sho
Eddy saturation describes the nonlinear mechanism in geophysical flows whereby, when average conditions are considered, direct forcing of the zonal flow increases the eddy kinetic energy, while the energy associated with the zonal flow does not incre
Zonal flows in rotating systems have been previously shown to be suppressed by the imposition of a background magnetic field aligned with the direction of rotation. Understanding the physics behind the suppression may be important in systems found in
In presence of an externally supported, mean magnetic field a turbulent, conducting medium, such as plasma, becomes anisotropic. This mean magnetic field, which is separate from the fluctuating, turbulent part of the magnetic field, has considerable