ﻻ يوجد ملخص باللغة العربية
The wide application of the modern resonant measurement techniques makes all the steps of the measuring process, including data acquisition more efficient and reliable. Here we investigate the multidimensional space of the parameters to determine the optimum span for resonant measurements. The study concentrated on experimental systems with standard performance and capabilities. We determine the range of the optimum span for the resonant frequency and quality factor by simulating and fitting resonant curves with different levels of asymmetry.
For one PCB trace region, where bare high voltage trace goes near GND pad, we estimated an electrical breakdown voltage in low vacuum using simplified geometrical model under some assumptions. Experimental measurement of Paschen curve for the PCB boa
The microwave resonator is one of the key components in the modern Electron Paramagnetic Resonance (EPR) spectroscopy setup, as it largely determines the performance characteristics and limitations of the entire spectrometer. In this research note th
Sensitive, real-time optical magnetometry with nitrogen-vacancy centers in diamond relies on accurate imaging of small ($ll 10^{-2}$) fractional fluorescence changes across the diamond sample. We discuss the limitations on magnetic-field sensitivity
This note presents a method to tune the resonant frequency $f_{0}$ of a rectangular microwave cavity. This is achieved using a liquid metal, GaInSn, to decrease the volume of the cavity. It is possible to shift $f_{0}$ by filling the cavity with this
We survey techniques for constrained curve fitting, based upon Bayesian statistics, that offer significant advantages over conventional techniques used by lattice field theorists.