ﻻ يوجد ملخص باللغة العربية
We investigate the parameter estimation in a magnon-cavity-magnon coupled system. PT symmetrical two magnons system can be formed in the gain magnetic materials by the adiabatic elimination of the cavity field mode. We show that the optimal estimation will not appear at the exceptional point due to that the quantum fluctuations are the strongest at the exceptional point. Moreover, we demonstrate that the measurements at the exceptional point tend to be optimal with the increase of prepared time. And the direct photon detection is the optimal measurement for the initial state in the vacuum input state. For the open PT symmetrical two magnons system, the quantum fluctuations will greatly reduce the degree of entanglement. Finally, we show that a higher estimated magnetic sensitivity can be obtained by measuring the frequency of one magnon in the PT symmetrical two magnons system.
Quantum illumination (QI) is a quantum sensing protocol mainly for target detection which uses entangled signal-idler photon pairs to enhance the detection efficiency of low-reflectivity objects immersed in thermal noisy environments. Especially, due
We propose to realize the pseudo-Hermiticity in a cavity magnonics system consisting of the Kittel modes in two small yttrium-iron-garnet spheres coupled to a microwave cavity mode. The effective gain of the cavity can be achieved using the coherent
We describe an apparatus designed to make non-demolition measurements on a Bose-Einstein condensate (BEC) trapped in a double-well optical cavity. This apparatus contains, as well as the bosonic gas and the trap, an optical cavity. We show how the in
Quantum entanglement, a key element for quantum information is generated with a cavity-magnomechanical system. It comprises of two microwave cavities, a magnon mode and a vibrational mode, and the last two elements come from a YIG sphere trapped in t
Cavity magnonics deals with the interaction of magnons - elementary excitations in magnetic materials - and confined electromagnetic fields. We introduce the basic physics and review the experimental and theoretical progress of this young field that