ﻻ يوجد ملخص باللغة العربية
Quantum illumination (QI) is a quantum sensing protocol mainly for target detection which uses entangled signal-idler photon pairs to enhance the detection efficiency of low-reflectivity objects immersed in thermal noisy environments. Especially, due to the naturally occurring background radiation, the photon emitted toward potential targets more appropriately lies in the microwave region. Here, we propose a hybrid quantum source based on cavity magnonics for microwave QI, where the medium that bridges the optical and the microwave modes is magnon, the quanta of spin wave. Within experimentally accessible parameters, significant microwave-optical quantum resources of interest can be generated, leading to orders of magnitude lower detecting error probability compared with the electro-optomechanical prototype quantum radar and any classical microwave radar with equal transmitted energy.
Quantum illumination (QI) theoretically promises up to a 6dB error-exponent advantage in target detection over the best classical protocol. The advantage is maximised by a regime which includes a very high background, which occurs naturally when one
Quantum illumination is a powerful sensing technique that employs entangled signal-idler photon pairs to boost the detection efficiency of low-reflectivity objects in environments with bright thermal noise. The promised advantage over classical strat
We investigate the parameter estimation in a magnon-cavity-magnon coupled system. PT symmetrical two magnons system can be formed in the gain magnetic materials by the adiabatic elimination of the cavity field mode. We show that the optimal estimatio
Cavity magnonics deals with the interaction of magnons - elementary excitations in magnetic materials - and confined electromagnetic fields. We introduce the basic physics and review the experimental and theoretical progress of this young field that
We study a parametrically-driven nanomechanical resonator capacitively coupled to a microwave cavity. If the nanoresonator can be cooled to near its quantum ground state then quantum squeezing of a quadrature of the nanoresonator motion becomes feasi