ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonreciprocal Transmission and Entanglement in a cavity-magnomechanical system

242   0   0.0 ( 0 )
 نشر من قبل Hongyu Liu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum entanglement, a key element for quantum information is generated with a cavity-magnomechanical system. It comprises of two microwave cavities, a magnon mode and a vibrational mode, and the last two elements come from a YIG sphere trapped in the second cavity. The two microwave cavities are connected by a superconducting transmission line, resulting in a linear coupling between them. The magnon mode is driven by a strong microwave field and coupled to cavity photons via magnetic dipole interaction, and at the same time interacts with phonons via magnetostrictive interaction. By breaking symmetry of the configuration, we realize nonreciprocal photon transmission and one-way bipartite quantum entanglement. By using current experimental parameters for numerical simulation, it is hoped that our results may reveal a new strategy to built quantum resources for the realization of noise-tolerant quantum processors, chiral networks, and so on.


قيم البحث

اقرأ أيضاً

204 - Jun-Hao Liu , Ya-Fei Yu , 2019
We study the nonreciprocal transmission and the fast-slow light effects in a cavity optomechanical system, in which the cavity supports a clockwise and a counter-clockwise circulating optical modes, both the two modes are driven simultaneously by a s trong pump field and a weak signal field. We find that when the intrinsic photon loss of the cavity is equal to the external coupling loss of the cavity, the system reveals a nonreciprocal transmission of the signal fields. However, when the intrinsic photon loss is much less than the external coupling loss, the nonreciprocity about the transmission properties almost disappears, and the nonreciprocity is shown in the group delay properties of the signal fields, and the system exhibits a nonreciprocal fast-slow light propagation phenomenon.
We investigate the magnon blockade effect in a parity-time (PT) symmetric-like three-mode cavity magnomechanical system involving the magnon-photon and magnon-phonon interactions. In the broken and unbroken PT-symmetric regions, we respectively calcu late the second-order correlation function analytically and numerically and further determine the optimal value of detuning. By adjusting different system parameters, we study the different blockade mechanisms and find that the perfect magnon blockade effect can be observed under the weak parameter mechanism. Our work paves a way to achieve the magnon blockade in experiment.
189 - Jun-Hao Liu , Ya-Fei Yu , 2018
We study the nonreciprocal transmission of a single-photon in a cavity optomechanical system, in which the cavity supports a clockwise and a counter-clockwise circulating optical modes, the mechanical resonator (MR) is excited by a weak coherent driv ing, and the signal photon is made up of a sequence of pulses with exactly one photon per pulse. We find that, if the input state is a single-photon state, it is insufficient to study the nonreciprocity only from the perspective of the transmission spectrums, since the frequencies where the nonreciprocity happens are far away from the peak frequency of the single-photon. So we show the nonreciprocal transmission behavior by comparing the spectrums of the input and output fields. In our system, we can achieve a transformation of the signal transmission from unidirectional isolation to unidirectional amplification in the single-photon level by changing the amplitude of the weak coherent driving. The effects of the mechanical thermal noise on the single-photon nonreciprocal transmission are also discussed.
We propose to realize the ground state cooling of magnomechanical resonator in a parity-time (PT)-symmetric cavity magnomechanical system composed of a loss ferromagnetic sphere and a gain microwave cavity. In the scheme, the magnomechanical resonato r can be cooled close to its ground state via the magnomechanical interaction, and it is found that the cooling effect in PT-symmetric system is much higher than that in non-PT-symmetric system. Resorting to the magnetic force noise spectrum, we investigate the final mean phonon number with experimentally feasible parameters and find surprisingly that the ground state cooling of magnomechanical resonator can be directly achieved at room temperature. Furthermore, we also illustrate that the ground state cooling can be flexibly controlled via the external magnetic field.
Photon blockade is an effective way to generate single photon, which is of great significance in quantum state preparation and quantum information processing. Here we investigate the statistical properties of photons in a double-cavity optomechanical system with nonreciprocal coupling, and explore the photon blockade in the weak and strong coupling regions respectively. To achieve the strong photon blockade, we give the optimal parameter relations under different blockade mechanisms. Moreover, we find that the photon blockades under their respective mechanisms exhibit completely different behaviors with the change of nonreciprocal coupling, and the perfect photon blockade can be achieved without an excessively large optomechanical coupling, i.e., the optomechanical coupling is much smaller than the mechanical frequency, which breaks the traditional cognition. Our proposal provides a feasible and flexible platform for the realization of single-photon source.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا