ترغب بنشر مسار تعليمي؟ اضغط هنا

Mathematical Game Theory

99   0   0.0 ( 0 )
 نشر من قبل Ulrich Faigle
 تاريخ النشر 2020
والبحث باللغة English
 تأليف Ulrich Faigle




اسأل ChatGPT حول البحث

These lecture notes attempt a mathematical treatment of game theory akin to mathematical physics. A game instance is defined as a sequence of states of an underlying system. This viewpoint unifies classical mathematical models for 2-person and, in particular, combinatorial and zero-sum games as well as models for investing and betting. n-person games are studied with emphasis on notions of utilities, potentials and equilibria, which allows to subsume cooperative games as special cases. The represenation of a game theoretic system in a Hilbert space furthermore establishes a link to the mathematical model of quantum mechancis and general interaction systems.



قيم البحث

اقرأ أيضاً

Evolutionary game dynamics is one of the most fruitful frameworks for studying evolution in different disciplines, from Biology to Economics. Within this context, the approach of choice for many researchers is the so-called replicator equation, that describes mathematically the idea that those individuals performing better have more offspring and thus their frequency in the population grows. While very many interesting results have been obtained with this equation in the three decades elapsed since it was first proposed, it is important to realize the limits of its applicability. One particularly relevant issue in this respect is that of non-mean-field effects, that may arise from temporal fluctuations or from spatial correlations, both neglected in the replicator equation. This review discusses these temporal and spatial effects focusing on the non-trivial modifications they induce when compared to the outcome of replicator dynamics. Alongside this question, the hypothesis of linearity and its relation to the choice of the rule for strategy update is also analyzed. The discussion is presented in terms of the emergence of cooperation, as one of the current key problems in Biology and in other disciplines.
We study the implications of endogenous pricing for learning and welfare in the classic herding model . When prices are determined exogenously, it is known that learning occurs if and only if signals are unbounded. By contrast, we show that learning can occur when signals are bounded as long as non-conformism among consumers is scarce. More formally, learning happens if and only if signals exhibit the vanishing likelihood property introduced bellow. We discuss the implications of our results for potential market failure in the context of Schumpeterian growth with uncertainty over the value of innovations.
We consider transferable-utility profit-sharing games that arise from settings in which agents need to jointly choose one of several alternatives, and may use transfers to redistribute the welfare generated by the chosen alternative. One such setting is the Shared-Rental problem, in which students jointly rent an apartment and need to decide which bedroom to allocate to each student, depending on the students preferences. Many solution concepts have been proposed for such settings, ranging from mechanisms without transfers, such as Random Priority and the Eating mechanism, to mechanisms with transfers, such as envy free solutions, the Shapley value, and the Kalai-Smorodinsky bargaining solution. We seek a solution concept that satisfies three natural properties, concerning efficiency, fairness and decomposition. We observe that every solution concept known (to us) fails to satisfy at least one of the three properties. We present a new solution concept, designed so as to satisfy the three properties. A certain submodularity condition (which holds in interesting special cases such as the Shared-Rental setting) implies both existence and uniqueness of our solution concept.
We add here another layer to the literature on nonatomic anonymous games started with the 1973 paper by Schmeidler. More specifically, we define a new notion of equilibrium which we call $varepsilon$-estimated equilibrium and prove its existence for any positive $varepsilon$. This notion encompasses and brings to nonatomic games recent concepts of equilibrium such as self-confirming, peer-confirming, and Berk--Nash. This augmented scope is our main motivation. At the same time, our approach also resolves some conceptual problems present in Schmeidler (1973), pointed out by Shapley. In that paper the existence of pure-strategy Nash equilibria has been proved for any nonatomic game with a continuum of players, endowed with an atomless countably additive probability. But, requiring Borel measurability of strategy profiles may impose some limitation on players choices and introduce an exogenous dependence among players actions, which clashes with the nature of noncooperative game theory. Our suggested solution is to consider every subset of players as measurable. This leads to a nontrivial purely finitely additive component which might prevent the existence of equilibria and requires a novel mathematical approach to prove the existence of $varepsilon$-equilibria.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا