ترغب بنشر مسار تعليمي؟ اضغط هنا

Equilibria of nonatomic anonymous games

104   0   0.0 ( 0 )
 نشر من قبل Fabio Angelo Maccheroni
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

We add here another layer to the literature on nonatomic anonymous games started with the 1973 paper by Schmeidler. More specifically, we define a new notion of equilibrium which we call $varepsilon$-estimated equilibrium and prove its existence for any positive $varepsilon$. This notion encompasses and brings to nonatomic games recent concepts of equilibrium such as self-confirming, peer-confirming, and Berk--Nash. This augmented scope is our main motivation. At the same time, our approach also resolves some conceptual problems present in Schmeidler (1973), pointed out by Shapley. In that paper the existence of pure-strategy Nash equilibria has been proved for any nonatomic game with a continuum of players, endowed with an atomless countably additive probability. But, requiring Borel measurability of strategy profiles may impose some limitation on players choices and introduce an exogenous dependence among players actions, which clashes with the nature of noncooperative game theory. Our suggested solution is to consider every subset of players as measurable. This leads to a nontrivial purely finitely additive component which might prevent the existence of equilibria and requires a novel mathematical approach to prove the existence of $varepsilon$-equilibria.



قيم البحث

اقرأ أيضاً

161 - Enxian Chen , Lei Qiao , Xiang Sun 2019
This paper proposes a new equilibrium concept robust perfect equilibrium for non-cooperative games with a continuum of players, incorporating three types of perturbations. Such an equilibrium is shown to exist (in symmetric mixed strategies and in pu re strategies) and satisfy the important properties of admissibility, aggregate robustness, and ex post robust perfection. These properties strengthen relevant equilibrium results in an extensive literature on strategic interactions among a large number of agents. Illustrative applications to congestion games and potential games are presented. In the particular case of a congestion game with strictly increasing cost functions, we show that there is a unique symmetric robust perfect equilibrium.
We consider a discrete-time nonatomic routing game with variable demand and uncertain costs. Given a routing network with single origin and destination, the cost function of each edge depends on some uncertain persistent state parameter. At every per iod, a random traffc demand is routed through the network according to a Bayes-Wardrop equilibrium. The realized costs are publicly observed and the Bayesian belief about the state parameter is updated. We say that there is strong learning when beliefs converge to the truth and weak learning when the equilibrium flow converges to the complete-information flow. We characterize the networks for which learning occurs. We prove that these networks have a series-parallel structure and provide a counterexample to prove that the condition is necessary.
We consider normal-form games with $n$ players and two strategies for each player, where the payoffs are i.i.d. random variables with some distribution $F$ and we consider issues related to the pure equilibria in the game as the number of players div erges. It is well-known that, if the distribution $F$ has no atoms, the random number of pure equilibria is asymptotically Poisson$(1)$. In the presence of atoms, it diverges. For each strategy profile, we consider the (random) average payoff of the players, called Average Social Utility (ASU). In particular, we examine the asymptotic behavior of the optimum ASU and the one associated to the best and worst pure Nash equilibria and we show that, although these quantities are random, they converge, as $ntoinfty$ to some deterministic quantities.
180 - Patricia Bouyer 2015
We study pure-strategy Nash equilibria in multi-player concurrent deterministic games, for a variety of preference relations. We provide a novel construction, called the suspect game, which transforms a multi-player concurrent game into a two-player turn-based game which turns Nash equilibria into winning strategies (for some objective that depends on the preference relations of the players in the original game). We use that transformation to design algorithms for computing Nash equilibria in finite games, which in most cases have optimal worst-case complexity, for large classes of preference relations. This includes the purely qualitative framework, where each player has a single omega-regular objective that she wants to satisfy, but also the larger class of semi-quantitative objectives, where each player has several omega-regular objectives equipped with a preorder (for instance, a player may want to satisfy all her objectives, or to maximise the number of objectives that she achieves.)
The use of monotonicity and Tarskis theorem in existence proofs of equilibria is very widespread in economics, while Tarskis theorem is also often used for similar purposes in the context of verification. However, there has been relatively little in the way of analysis of the complexity of finding the fixed points and equilibria guaranteed by this result. We study a computational formalism based on monotone functions on the $d$-dimensional grid with sides of length $N$, and their fixed points, as well as the closely connected subject of supermodular games and their equilibria. It is known that finding some (any) fixed point of a monotone function can be done in time $log^d N$, and we show it requires at least $log^2 N$ function evaluations already on the 2-dimensional grid, even for randomized algorithms. We show that the general Tarski problem of finding some fixed point, when the monotone function is given succinctly (by a boolean circuit), is in the class PLS of problems solvable by local search and, rather surprisingly, also in the class PPAD. Finding the greatest or least fixed point guaranteed by Tarskis theorem, however, requires $dcdot N$ steps, and is NP-hard in the white box model. For supermodular games, we show that finding an equilibrium in such games is essentially computationally equivalent to the Tarski problem, and finding the maximum or minimum equilibrium is similarly harder. Interestingly, two-player supermodular games where the strategy space of one player is one-dimensional can be solved in $O(log N)$ steps. We also observe that computing (approximating) the value of Condons (Shapleys) stochastic games reduces to the Tarski problem. An important open problem highlighted by this work is proving a $Omega(log^d N)$ lower bound for small fixed dimension $d geq 3$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا