ﻻ يوجد ملخص باللغة العربية
Objective. Many electroencephalogram (EEG)-based brain-computer interface (BCI) systems use a large amount of channels for higher performance, which is time-consuming to set up and inconvenient for practical applications. Finding an optimal subset of channels without compromising the performance is a necessary and challenging task. Approach. In this article, we proposed a cross-correlation based discriminant criterion (XCDC) which assesses the importance of a channel for discriminating the mental states of different motor imagery (MI) tasks. Channels are ranked and selected according to the proposed criterion. The efficacy of XCDC is evaluated on two motor imagery EEG datasets. Main results. In both datasets, XCDC significantly reduces the amount of channels without compromising classification accuracy compared to the all-channel setups. Under the same constraint of accuracy, the proposed method requires fewer channels than existing channel selection methods based on Pearsons correlation coefficient and common spatial pattern. Visualization of XCDC shows consistent results with neurophysiological principles. Significance. This work proposes a quantitative criterion for assessing and ranking the importance of EEG channels in MI tasks and provides a practical method for selecting the ranked channels in the calibration phase of MI BCI systems, which alleviates the computational complexity and configuration difficulty in the subsequent steps, leading to real-time and more convenient BCI systems.
The study reports the performance of Parkinsons disease (PD) patients to operate Motor-Imagery based Brain-Computer Interface (MI-BCI) and compares three selected pre-processing and classification approaches. The experiment was conducted on 7 PD pati
We introduce here the idea of Meta-Learning for training EEG BCI decoders. Meta-Learning is a way of training machine learning systems so they learn to learn. We apply here meta-learning to a simple Deep Learning BCI architecture and compare it to tr
Transfer learning (TL) has been widely used in motor imagery (MI) based brain-computer interfaces (BCIs) to reduce the calibration effort for a new subject, and demonstrated promising performance. While a closed-loop MI-based BCI system, after electr
Brain-computer interface (BCI) systems have potential as assistive technologies for individuals with severe motor impairments. Nevertheless, individuals must first participate in many training sessions to obtain adequate data for optimizing the class
In this document we derive the mapping between the failure event correlation and shadowing cross-correlation in dual connectivity architectures. In this case, we assume that a single UE is connected to two gNBs (next generation NodeB).