ﻻ يوجد ملخص باللغة العربية
We introduce here the idea of Meta-Learning for training EEG BCI decoders. Meta-Learning is a way of training machine learning systems so they learn to learn. We apply here meta-learning to a simple Deep Learning BCI architecture and compare it to transfer learning on the same architecture. Our Meta-learning strategy operates by finding optimal parameters for the BCI decoder so that it can quickly generalise between different users and recording sessions -- thereby also generalising to new users or new sessions quickly. We tested our algorithm on the Physionet EEG motor imagery dataset. Our approach increased motor imagery classification accuracy between 60% to 80%, outperforming other algorithms under the little-data condition. We believe that establishing the meta-learning or learning-to-learn approach will help neural engineering and human interfacing with the challenges of quickly setting up decoders of neural signals to make them more suitable for daily-life.
Transfer learning (TL) has been widely used in motor imagery (MI) based brain-computer interfaces (BCIs) to reduce the calibration effort for a new subject, and demonstrated promising performance. While a closed-loop MI-based BCI system, after electr
Convolutional neural networks (CNNs) have become a powerful technique to decode EEG and have become the benchmark for motor imagery EEG Brain-Computer-Interface (BCI) decoding. However, it is still challenging to train CNNs on multiple subjects EEG w
Background: Common spatial pattern (CSP) has been widely used for feature extraction in the case of motor imagery (MI) electroencephalogram (EEG) recordings and in MI classification of brain-computer interface (BCI) applications. BCI usually requires
Brain-computer interface (BCI) systems have potential as assistive technologies for individuals with severe motor impairments. Nevertheless, individuals must first participate in many training sessions to obtain adequate data for optimizing the class
Brain Computer Interface technologies are popular methods of communication between the human brain and external devices. One of the most popular approaches to BCI is Motor Imagery. In BCI applications, the ElectroEncephaloGraphy is a very popular mea